REVIEW AND CHANGES IN THE USE OF SWEETENING INGREDIENTS OR INGREDIENTS CONVEYING SWEETNESS IN PROCESSED PRODUCTS

CROSS-SECTIONAL STUDY

2024 EDITION

LIST OF PARTICIPANTS

Study coordination

Aurore COUDRAY - ANSES

Scientific coordination

Karine VIN - ANSES
Julie GAUVREAU-BEZIAT - ANSES
Jean-Luc VOLATIER - ANSES

Scientific contribution

Olivier DIGAUD - ANSES
Barbara DUPLESSIS - ANSES
Hélène MATHIOT - ANSES
Anaëlle RABÈS - ANSES

We would like to thank the INRAE OQALI team for collecting, coding, pre-processing and verifying data for their product categories.

This report was validated by the Oqali Steering Committee on 26/01/2024.

CONTENTS

2.1 Definition of ingredients regarded as sweetening or conveying sweetness 17
2.2 Selection of sweetening ingredients or ingredients conveying sweetness in the products studied. 20
2.3 Data analysis 20
3.1 Presentation of the data used 22
3.2 Frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness 24
3.3 Frequency of presence of classes of sweetening ingredients or ingredients conveying sweetness. 29
3.4 Combinations of classes of sweetening ingredients or ingredients conveying sweetness 54
3.5 Frequency of presence of intense sweeteners 63
3.6 Conclusion on the use of sweetening ingredients or ingredients conveying sweetness, based on the most recent data 72
4.1 Presentation of the data used 74
4.2 Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness 77
4.3 Change in frequency of presence by class of sweetening ingredients or ingredients conveying sweetness. 81
4.4 Change in combinations of classes of sweetening ingredients or ingredients conveying sweetness. 86
4.5 Study of reformulation regarding sweetening ingredients or ingredients conveying sweetness for products present at both baseline and follow-up. 95
4.6 Change in the use of intense sweeteners 101
4.7 Conclusion on changes in the use of sweetening ingredients or ingredients conveying sweetness. 114

List of figures

Figure 1: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, all products combined (among the 31 food categories currently considered by OQALI)

Figure 2: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, by food category (among the 31 categories currently considered by OQALI; sorted in descending order of the proportion of products with sweetening ingredients or ingredients conveying sweetness)

Figure 3: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, by type of brand (among the 31 food categories currently considered by OQALI) 27

Figure 4: Proportion of products containing at least the class of sweetening ingredients or ingredients conveying sweetness considered, all products combined (among the 31 food categories currently considered by OQALI, i.e. 39,101 products studied; sorted in descending order of the proportion of products)

Figure 5: Proportion of products with at least one ingredient in the Sucrose class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Sucrose class)

Figure 6: Proportion of products with at least one ingredient in the Sucrose class, by type of brand (among the 31 food categories currently monitored by OQALI).. 33

Figure 7: Proportion of products with at least one ingredient in the Syrups class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Syrups class).

34
Figure 8: Proportion of products with at least one ingredient in the Syrups class, by type of brand (among the 31 food categories currently monitored by OQALI).. 35

Figure 9: Proportion of products with at least one ingredient in the Fruit juices and concentrates class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Fruit juices and concentrates class)............. 36

Figure 10: Proportion of products with at least one ingredient in the Fruit juices and concentrates class, by type of brand (among the 31 food categories currently monitored by OQALI).

Figure 11: Proportion of products with at least one ingredient in the Other sugars class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Other sugars class).

Figure 12: Proportion of products with at least one ingredient in the Other sugars class, by type of brand (among the 31 food categories currently monitored by OQALI)..................................... 39

Figure 13: Proportion of products with at least one ingredient in the Lactose class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Lactose class).

Figure 14: Proportion of products with at least one ingredient in the Lactose class, by type of brand (among the 31 food categories currently monitored by OQALI).

Figure 15: Proportion of products with at least one ingredient in the Caramel class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Caramel class). 42

Figure 16: Proportion of products with at least one ingredient in the Caramel class, by type of brand (among the 31 food categories currently monitored by OQALI).. 43

Figure 17: Proportion of products with at least one ingredient in the Other ingredients conveying sugars class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Other ingredients conveying sugars class) 44

Figure 18: Proportion of products with at least one ingredient in the Other ingredients conveying sugars class, by type of brand (among the 31 food categories currently monitored by OQALI). 45

Figure 19: Proportion of products with at least one ingredient in the Bulk sweeteners class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Bulk sweeteners class).. 46

Figure 20: Proportion of products with at least one ingredient in the Bulk sweeteners class, by type of brand (among the 31 food categories currently monitored by OQALI)............................. 47

Figure 21: Proportion of products with at least one ingredient in the Intense sweeteners class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Intense sweeteners class). 48

Figure 22: Proportion of products with at least one ingredient in the Intense sweeteners class, by type of brand (among the 31 food categories currently monitored by OQALI).

Figure 23: Proportion of products with at least one ingredient in the Honey class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Honey class).

Figure 24: Proportion of products with at least one ingredient in the Honey class, by type of brand (among the 31 food categories currently monitored by OQALI)... 51

Figure 25: Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class).

Figure 26: Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by type of brand (among the 31 food categories currently monitored by OQALI).. 53

Figure 27: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, all products combined (among the 31 food categories currently monitored by OQALI).

Figure 28: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products with no sweetening ingredients or ingredients conveying sweetness).

Figure 29: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by type of brand (among the 31 food categories currently monitored by OQALI; sorted in descending order of the proportion of products with no sweetening ingredients or ingredients conveying sweetness)

Figure 30: Breakdown of products by combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, all products combined (among the 31 food categories currently monitored by OQALI)

Figure 31: Breakdown of products by combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, by type of brand (among the 31 food categories currently monitored by OQALI).

Figure 32: Use of intense sweeteners in the four relevant food categories (Soft drinks, Confectionery, Fresh dairy products and desserts, Syrups) based on the latest available data (sorted by most commonly used intense sweetener, all products combined).

Figure 33: Use of intense sweeteners by type of brand, based on the latest data available (among the 31 food categories currently monitored by OQALI; sorted by most commonly used intense sweetener, all products combined)

Figure 34: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, all products combined (among the 31 food categories currently monitored by OQALI).

Figure 35: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, for the four relevant food categories

Figure 36: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, by type of brand (among the 31 food categories currently monitored by OQALI).

Figure 37: Change in the breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, all products combined (among the 27 food categories monitored for changes).

Figure 38: Proportion of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, all paired products combined (among the 27 food categories monitored for changes).

Figure 39: Proportion of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, by food category (27 categories monitored for changes).98

Figure 40: Proportions of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, by type of brand (27 food categories monitored for changes)

Figure 41: Breakdown of paired products by the most commonly used combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, all paired products combined, at baseline and at follow-up (among the 27 food categories monitored for changes).100

List of tables

Table 2: List of the 31 food categories currently monitored by OQALI and numbers of products concerned (most recent data per category). 22

Table 3: Numbers and proportions of products containing at least one intense sweetener considered in sweetened products and in all products (among the 31 food categories currently monitored by OQALI; sorted in descending order of the proportion of sweetened products). ... 63

Table 4: List of the 27 OQALI product categories included in the change study (among the 31 food categories currently monitored by OQALI) and numbers of associated products. 75

Table 5: Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness, all products combined and by food category (27 categories monitored for changes; sorted in descending order of the proportion of products with a sweetening ingredient or ingredient conveying sweetness at baseline). 78

Table 6: Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness, all products combined and by type of brand (27 food categories monitored for changes; sorted in descending order of the proportion of products with sweetening ingredients or ingredients conveying sweetness at baseline).

Table 7: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products containing each of the classes considered, at baseline). 81

Table 8: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness and by food category (27 categories monitored for changes)
.83
Table 9: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness and by type of brand (27 food categories monitored for changes). 85

Table 10: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, all products combined (27 food categories monitored for changes).

Table 11: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, by food category (27 categories monitored for changes). 88

Table 12: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, by type of brand (27 food categories monitored for changes).

Table 13: Change in the proportion of products by combination of sweetening ingredients or ingredients conveying sweetness considered, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products with each of the combinations considered, at baseline).

Table 14: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness, all products combined, by food category and by type of brand, for paired products (27 categories monitored for changes)96

Table 15: Change in the frequency of presence by intense sweetener, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products each with intense sweeteners, at baseline)101

Table 16: Change in the frequency of presence by intense sweetener and by relevant food category for which updated data were available (Soft drinks, Fresh dairy products and desserts, Syrups; sorted in descending order of the proportion of products each containing intense sweeteners, at baseline for each category of interest). 104

Table 17: Change in the frequency of presence by intense sweetener and by type of brand (27 food categories monitored for changes) 106

Table 18: Change in the frequency of presence by combination of intense sweeteners, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products with the combination considered, at baseline).

Table 19: Change in the frequency of presence by combination of intense sweeteners and by relevant food category for which updated data were available (Soft drinks, Fresh dairy products and desserts, Syrups; sorted in descending order of the proportion of products with the combination considered, at baseline for each relevant category). 110

Table 20: Change in the frequency of presence by combination of intense sweeteners and by type of brand (among the 27 food categories monitored for changes; sorted in descending order of the proportion of products with the combination considered, at baseline for each type of brand)

List of annexes

Annex 1: OQALI definitions of food categories and types of brands 119
Annex 2: Breakdown of products with and without sweetening ingredients by food category(among the 31 categories currently considered by OQALI; sorted in descending order of theproportion of products with sweetening ingredients)122
Annex 3: Numbers and proportions of products by food category and type of brand, for theproducts studied in the part on the review of the use of sweetening ingredients or ingredientsconveying sweetness (among the 31 categories studied based on the latest data available)..... 123Annex 4: Numbers and proportions of products by the number of different classes of sweeteningingredients or ingredients conveying sweetness found in the same product, by food category(31 categories currently considered by OQALI) and among the 39,101 products studied......... 124
Annex 5: Numbers and proportions of products by the number of different classes of sweeteningingredients or ingredients conveying sweetness found in the same product, by type of brand(among the 31 food categories currently considered by OQALI) and among the 39,101 productsstudied.125
Annex 6: Numbers and proportions of products by combination of most commonly used classes of sweetening ingredients or ingredients conveying sweetness, all products combined (among the 31 food categories currently considered by OQALI) and among the 39,101 products studied 126
Annex 7: Numbers and proportions of products containing at least the intense sweetener considered in sweetened products and in all products, for each of the four relevant food categories 127
Annex 8: Numbers and proportions of products containing at least the intense sweetenerconsidered in sweetened products and in all products, by type of brand, based on the latest dataavailable (among the 31 food categories currently monitored by OQALI)128
Annex 9: Numbers and proportions of products by combination of intense sweeteners, insweetened products and in all products (among the 31 food categories currently monitored byOQALI)129
Annex 10: Numbers and proportions of products by combination of intense sweeteners, in sweetened products and in all products, for the four relevant food categories. 130
Annex 11: Numbers and proportions of products by combination of intense sweeteners, insweetened products and in all products, by type of brand (among the 31 food categoriescurrently monitored by OQALI)131
Annex 12: Numbers and proportions of products by food category and type of brand, for theproducts studied in the part on changes in the use of sweetening ingredients or ingredientsconveying sweetness (27 categories studied)132
Annex 13: Change in the proportions of products by class of sweetening ingredients oringredients conveying sweetness and by food category (27 categories monitored forchanges)133
Annex 14: Change in the proportions of products by class of sweetening ingredients oringredients conveying sweetness and by type of brand (27 food categories monitored forchanges)134
Annex 15: Change in the proportions of products by the number of classes of sweetening ingredients or ingredients conveying sweetness and by food category (27 categories monitored for changes) 135
Annex 16: Change in the proportions of products by the number of classes of sweetening ingredients or ingredients conveying sweetness and by type of brand (27 food categories monitored for changes) 136
Annex 17: Numbers and proportions of paired products by food category and type of brand
(among the 27 categories studied in the part on changes)... 137
Annex 18: Change in the proportions of paired products according to the class of sweetening ingredients or ingredients conveying sweetness, by food category and type of brand (27 categories monitored for changes) 138

1. INTRODUCTION

Since 2008, OQALI has been conducting sectoral studies to characterise the nutritional quality of the food supply, both in terms of the nutrition information on the packaging and the nutritional composition of the products. All processed food products (excluding out-of-home catering) are now covered. Changes in the nutritional quality of processed food products over time are monitored regularly (Goglia et al. 2010, Menard et al. 2012) and made public (available on www.oqali.fr). Socio-economic parameters such as market share and the different types of brands (national brands, retailer brands, entry-level retailer brands, hard discount products, specialised organic and non-organic retailer brands) are also taken into account in the indicators relating to labelling parameters and nutritional values (Menard et al. 2011, Perrin et al. 2017, Perrin et al. 2018). In addition, OQALI examines the details of the ingredient lists. One of its most recent studies, for example, analysed the presence of additives in processed food products on the French market (Oqali 2019a), presenting a descriptive review of the frequency of presence of additives in 30 food categories (i.e. more than 30,000 products collected between 2008 and 2016), as well as changes in the use of food additives for 20 food categories. On the subject of sweetening ingredients or ingredients conveying sweetness, OQALI previously produced an initial descriptive review of intense sweeteners (Oqali 2012). The current report is a follow-up to that first study, and aims to provide a new review of the levels of use of sweetening ingredients or ingredients conveying sweetness (including intense sweeteners), as well as their changes in processed food products.

The food processing industry uses various sweetening ingredients or ingredients conveying sweetness. They have several different purposes: to impart a sweet taste to foods, improve their palatability, counterbalance acidity, influence the texture of products, etc. The addition of sugars also helps limit the formation of ice in products subjected to freezing. They are also involved in the Maillard reaction, by colouring meat and bread products, and in the phenomenon of caramelisation. Lastly, sugars can act as preservatives, like salt, by reducing water activity, which limits the development of micro-organisms (Erickson and Slavin 2015).

Sweetening ingredients and ingredients conveying sweetness encompass a wide variety of ingredients. In addition, several terms are used for these ingredients, particularly for sugars, which can make it difficult for consumers to identify them in a product, especially if a technical term is used (Cowburn and Stockley 2007, Miller and Cassady 2015, Carrillo, Varela, and Fiszman 2012). These ingredients are often perceived as "hidden sugars". While the definition of total sugars is generally accepted, there is not always a consensus on added sugars and free sugars, which may have definitions of varying precision. Total sugars include all the mono- and disaccharides present in a foodstuff, excluding polyols (European Parliament and Council 2011). In the United States, added sugars correspond to sugars and syrups added to foods or beverages during their manufacture or preparation (Food and Drug Administration 2014). This definition excludes the sugars naturally present in milk and fruit (United States Department of Agriculture). The European Food Safety Authority (EFSA) considers the following to be added sugars: sucrose, fructose, glucose, starch hydrolysates such as glucose or fructose syrups, and other sweet preparations used as such or added during food preparation and manufacturing (European Food Safety Authority 2018). For its part, the French Agency for Food, Environmental and Occupational Health \& Safety (ANSES) defines added sugars more broadly
by including mono- and disaccharides added during the manufacture or preparation of the food, starch hydrolysates (mainly glucose and glucose-fructose syrups) and ingredients used for their sweetening power (concentrated fruit juices, honey, molasses) (ANSES 2016). The World Health Organization (WHO) uses the term "free sugars" instead. In 2003, it defined them as all monoand disaccharides added to foods by the manufacturer, cook or consumer, and sugars naturally present in honey, syrups and fruit juices (World Health Organization 2003). In 2015, it added fruit juice concentrates to this definition of free sugars, while intrinsic sugars, found in whole fresh fruit and vegetables, remained excluded (WHO 2015).

There are several nutritional recommendations for added or free sugars. In most cases, it is recommended that free sugars should account for less than 10% of total energy intake (ANSES 2016, European Food Safety Authority 2018). The WHO states that reducing the intake of free sugars to less than 5% of total energy intake would offer additional health benefits, according to the studies currently available (WHO 2015). In its 2016 opinion, ANSES considered that it was not appropriate to define a recommendation that focused solely on added sugars, as the data currently available cannot distinguish the health effects of sugars naturally present in products from those of added sugars. The proposed maximum limit therefore relates to total sugars, with a threshold of 100 g of sugar per day for a healthy adult. Note that lactose and galactose, which are sugars naturally present in milk and dairy products, are not included in the calculation of this value because the available data have not been able to establish a link with any health risk (ANSES 2016).

Over-consumption of sweet products can upset the energy balance and lead to weight gain (Te Morenga, Mallard, and Mann 2012, ANSES 2016). For several years now, there has been an increase in the number of people with health problems partly related to excessive consumption of sweet products. In the countries of the Organisation for Economic Co-operation and Development (OECD), the latest data show that 60\% of the adult population (2019 data), 18.3\% of adolescents aged 15 (2017/2018 data) and almost one third of children aged 5 to 9 (2016 data) are overweight (including obese) (OECD 2021). At the European level, 52.7% of the adult population was considered to be overweight (including obese) in 2019 (Eurostat 2019). In France, the INCA3 study on the food consumption and eating habits of the population showed that 34% of adults were overweight and 17% were obese, while the prevalence rates for overweight and obesity among children under 18 years of age were 13% and 4%, respectively. Compared with the previous INCA2 study, these prevalence rates were stable for children aged 3 to 14, but increases were observed among adolescents (aged 15 to 17) for overweight and among adults for obesity (ANSES 2017). Being overweight is not the only consequence of the consumption of large quantities of sweet foods. In 2016, ANSES issued an opinion stating that sugar consumption contributes to excess energy intake, which can lead to the development of type 2 diabetes (ANSES 2016). In this opinion, ANSES also pointed out that consuming sweet foods can lead to tooth decay (ANSES 2016).

Public health policies aimed at reducing the consumption of added sugars have been put in place around the world. One of these involves taxing products containing added sugars, particularly non-alcoholic beverages. By 2012, 35 states in the United States had introduced a "soda tax". However, these taxes are probably not high enough to have a significant impact, because it has been shown that a 20% price increase would be needed to reduce soda consumption by 24% (Powell et al. 2013). In France, sugar-sweetened beverages are also taxed according to the amount of sugar added (Ministère de l'action et des comptes publics 2018). As an alternative to adding sugar, food manufacturers have reformulated their products partly by using sweeteners. Among these, intense sweeteners, which include a variety of substances
extracted from plants or obtained by chemical synthesis, are particularly interesting because they have a very high sweetening power compared to sucrose, while providing few or no calories (ANSES 2015). In its opinion on intense sweeteners, ANSES indicated that the long-term use of intense sweeteners as a sugar substitute, particularly in beverages, was not justified for the general population. The Agency also stated that artificially- or sugar-sweetened beverages should not replace the consumption of water (ANSES 2015). More recently, in July 2023, the International Agency for Research on Cancer (IARC) and the WHO-FAO Joint Expert Committee on Food Additives (JECFA) published new studies on aspartame (IARC-JECFA 2023): IARC concluded that aspartame was "Possibly carcinogenic to humans (Group 2B)", while JECFA maintained the previously established acceptable daily intake. In France, artificially-sweetened beverages are also taxed (Administration française 2018). Besides intense sweeteners, the use of flavourings may be another way of reducing the sugar content of products. Some studies have tested the acceptability to children of products with a reduced sugar content, compensated by the addition of flavourings, and have compared the reformulated products with the basic nonreformulated recipes (Velazquez et al. 2020, Oliveira et al. 2021). Thus, a yoghurt with a 25% reduced sugar content and the addition of a 0.2% concentration of strawberry or vanilla flavouring was rated by children as highly as the product without a reduced sugar content (Oliveira et al. 2021). However, for these reformulations, it is necessary to target the flavours to be used and study the concentration to be applied, bearing in mind that these parameters are product-dependent (Stieger and van de Velde 2013).

Since the introduction of Regulation (EU) No 1169/2011, known as the INCO Regulation, it has been mandatory to provide a list of ingredients and nutritional values on the labels of prepackaged foodstuffs. Regarding the nutritional values associated with sugars, only the amount of total sugars must be stated on the label (European Parliament and Council 2011). No distinction is made between added sugars and free sugars. In the United States, the Food and Drug Administration has made changes to the nutrition labelling of foods, in particular by making it mandatory to state the amount of added sugars as well as the already required carbohydrates and total sugars. Labelling the amount of added sugars in products intended for the US market has thus been mandatory since 1 January 2021 (Food and Drug Administration 2018). In France, information on the use of sweetening ingredients or ingredients conveying sweetness in the formulation of a product is provided in the ingredient list. This information is very often limited to the presence or absence of an ingredient in the product, because the amount used is only indicated if the ingredient is emphasised on the packaging (name of the foodstuff, represented by pictures or graphics, etc.) (European Parliament and Council 2011).

Various studies have examined the proportion of processed food products containing sweetening ingredients or ingredients conveying sweetness, with definitions ranging from narrow to broad and covering a specific period (Acton et al. 2017, Dunford et al. 2018, Probst et al. 2017). To our knowledge, very few studies have focused on changes in the frequency of presence of sweetening ingredients or ingredients conveying sweetness.

Therefore, following on from the first OQALI study on ingredients (Oqali 2012), which helped characterise the use of intense sweeteners, this second study takes into account a greater number of sweetening ingredients or ingredients conveying sweetness, with the following objectives:

- conduct a descriptive review of the frequency of presence of these sweetening ingredients or ingredients conveying sweetness, grouped together into classes, as well as their combinations based on the latest available data (31 food categories);
- carry out an initial assessment of changes in the use of classes of sweetening ingredients or ingredients conveying sweetness, as well as their combinations based on the available updated data (corresponding to a sub-section of the categories currently monitored by OQALI: 27 food categories out of 31);
- conduct a detailed study on changes in the use of intense sweeteners.

2. METHOD

2.1 Definition of ingredients regarded as sweetening or conveying sweetness

Work was carried out to select ingredients on the basis of the ingredient lists collected by OQALI, in order to first identify and then categorise the different types of ingredients regarded as sweetening or conveying sweetness.

This classification was then discussed in a broad consultation with in-house experts from ANSES's Risk Assessment Department (the Ciqual team managing the French reference table on the nutritional composition of foods and the Nutritional Risk Assessment Unit) and OQALI's partners ${ }^{1}$, in order to gather their views and questions. Following another in-house consultation, these discussions led to the initial classification being improved, to provide further clarification on the definitions and/or classification of certain ingredients and make trade-offs where necessary. On completion of this work, a meeting was organised with OQALI partners in order to present the decisions taken and the changes made to the classification, and distribute the finalised version.

The classification used in this study is therefore made up of 11 classes of ingredients regarded as sweetening or conveying sweetness ${ }^{2}$. These classes, together with their definitions and examples of ingredients found in the ingredient lists, are presented in Table 1.

[^0]Table 1: Classification of sweetening ingredients or ingredients conveying sweetness studied by OQALI.

Class of sweetening ingredients or ingredients conveying sweetness	Definition	Examples of ingredients as mentioned in the labelled ingredient lists
Sucrose	groups together ingredients containing sucrose or mentioning "sugar"	brown cane sugar / sucrose / sugar / caramelised sugar / cane sugar / icing sugar / vanilla sugar / brown beet sugar
Lactose	groups together ingredients containing lactose	lactose / lactose powder
Other sugars	groups together mono- and disaccharides, alone or in combination (excluding sucrose, mention of "sugar" and lactose)	dextrose / fructose / glucose / caramelised glucose / dehydrated glucose / glucose powder / isomaltulose / maltose / coconut sugar / invert sugar / sugars / caramelised sugars / invert sugars / trehalose / xylose
Syrups	groups together mono- and disaccharides alone or in combination in liquid form (sugar syrups, sugar and water solutions, etc.), flavoured syrups (coffee, caramel, etc.), plant-based syrups (made from plants, fruit, cereals, etc.) and oligosaccharide syrups. This class does not include polyol syrups but may contain syrups in powder form.	molasses concentrate / molasses extract / sugarcane juice / molasses / coconut sap / syrup / caramel syrup / date syrup / dextrose_fructose syrup / fructose syrup / fructo_oligosaccharide syrup / glucose syrup / invert glucose syrup / glucose_fructose syrup / tapioca syrup / molasses syrup / sucrose syrup / sugar syrup / invert sugar syrup / agave syrup / maple syrup / oligofructose syrup / syrup derived from cereals / liquid cane sugar / liquid sugar / liquid invert sugar
Fruit juices and concentrates	groups together ingredients corresponding to a part extracted from fruit (juice, juice extract, etc.), as well as fruit concentrates whether or not in juice form (juice from concentrate, juice concentrate, fruit concentrate, etc.).	fruit juice (whatever the fruit) / fruit juice powder (whatever the fruit) / fruit juice from concentrate (whatever the fruit) / fruit concentrate (whatever the fruit) / fruit extract (whatever the fruit) / fruit juice extract (whatever the fruit) / dehydrated fruit juice (whatever the fruit) / cranberry concentrate / lemon concentrate / date concentrate / fig concentrate / elderberry concentrate / tamarind concentrate / acerola concentrate / coconut water concentrate / coconut water / coconut water from concentrate / coconut water powder / aronia extract / coconut extract / coconut juice / soursop juice / rosehip juice / melon juice / rowan juice from concentrate / grape must / date nectar
Caramel	groups together caramel-based ingredients except for those that have undergone caramelisation or are in syrup form	caramel / salted butter caramel / milk caramel / caramel powder / e150a_plain caramel / e150b_caustic sulphite caramel / e150c_ammonia caramel / e150d_sulphite ammonia caramel / e150_caramel
Honey	groups together honey and honey-based ingredients	honey extract / honey / honey powder

Class of sweetening ingredients or ingredients conveying sweetness	Definition	Examples of ingredients as mentioned in the labelled ingredient lists
Other ingredients conveying sugars	groups together other ingredients mentioning a "sweet" or "caramelised" state, "candied" fruit, oligosaccharides other than syrups, and formulated ingredients such as compotes, fruit or milk jams, jellies, biscuits and cakes whose ingredient lists do not provide details of the ingredients used	candied fruit peel / candied nuts / caramelised nuts / chocolate nuts / sweetened dehydrated fruit / sweetened fruit / fruit paste / sweetened fruit purée / caramelised butter / caramelised salted butter / biscuit / amaretto biscuit / sweetened liquid egg white / sweetened fat-reduced cocoa powder / biscuit cereals / chocolate cereals / sweetened whipped cream / chocolate / fruit compote / concentrated fruit compote / chocolate confectionery / fruit jam / milk jam (dulce de leche) / caramelised cream / nougat cream / prune cream / feuilletine / sweetened fresh cheese / fructo_oligosaccharides / candied fruit / galacto_oligosaccharides / fruit jelly / genoise sponge / inulin / sweetened liquid egg yolk / sweetened concentrated or powdered whey / sweetened condensed skimmed milk / sweetened condensed milk / sweetened powdered milk / sweetened condensed whole milk / candied chestnuts / nougat / nougatine / sweetened and salted fish eggs / oligofructose / oligosaccharides / spread / white chocolate paste / hazelnut paste / walnut paste / coconut paste / macadamia paste / nougat paste / pistachio paste / praline paste / almond paste / caramelised apple / praline / fruit sauce / sweetened soy sauce / sweetened yoghurt / candied lemon zest
Bulk sweeteners	groups together all sweeteners that are not regarded as intense sweeteners, that have a sweetening power less than or similar to that of sugar, that are used to impart a sweet taste to foodstuffs or used in table-top sweeteners ((EC) No 1333/2008)	e420(i)_sorbitol / e420(ii)_sorbitol syrup / e420_sorbitols / e421_mannitol / e953_isomalt / e965(i)_maltitol / e965(ii)_maltitol syrup / e965_maltitols / e966_lactitol / e967_xylitol / e968_erythritol
Intense sweeteners	groups together substances with a very high sweetening power and few or no calories, used to impart a sweet taste to foodstuffs or used in tabletop sweeteners ((EC) No 1333/2008)	e950_acesulfame k / e951_aspartame / e952_cyclamates / e954_saccharins / e955_sucralose / e959_neohesperidin dc / e960_steviol glycosides / e961_neotame / e962_salt of aspartame-acesulfame
Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness *	groups together flavourings, whether natural or not, whose flavour is evocative of an ingredient or food considered to be sweetening or to convey sweetness	(natural) caramel flavouring / (natural) chocolate flavouring / (natural) cola flavouring / (natural) maple flavouring / (natural) honey flavouring / natural nougat flavouring / natural brown sugar flavouring / biscuit flavouring / brioche flavouring / cappuccino flavouring / crème brûlée flavouring / grenadine flavouring / macaroon flavouring / honey lemon flavouring / praline flavouring / sabayon flavouring / tiramisu flavouring
* Some of the flavourings used in processed food products optionally state the flavour imparted. The flavourings describing a flavour corresponding to an ingredient or food considered to be sweetening or to convey sweetness according to the classification definitions used for this report have therefore been grouped together in the "Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness" class. These flavourings have been included in the OQALI study of sweetening ingredients and ingredients conveying sweetness because they are used to impart or modify the odour and/or taste of the foods in which they are incorporated (even in very small quantities) and therefore contribute to the general perception of the sweet taste of the product (without adding any sugar or sweetening ingredient as such). Note that stating the flavour is optional and this may only appear on the label under certain conditions (European Parliament and Council 2008a): ingredient lists therefore only mention the ingredient "flavouring" or "natural flavouring" without specifying the flavour imparted. These ingredients were not included in this study.		

2.2 Selection of sweetening ingredients or ingredients conveying sweetness in the products studied

Based on the ingredient lists in the products considered, ingredients meeting the previously established definitions were identified at the most detailed level possible. This means that if the ingredient list stated "apricots in syrup: apricots, water, sugar", the ingredient considered in this study was sugar. If the ingredient list stated "caramelising sugar: caramel, brown sugar", only the ingredients "caramel" and "brown sugar" were considered. In rare cases where an ingredient list simply stated "shortbread biscuit" without detailing its constituent ingredients, the "shortbread biscuit" was then regarded as a sweetening ingredient or ingredient conveying sweetness. On the other hand, if the ingredient list stated "biscuit: wheat flour, sugar, concentrated butter", then the ingredient "sugar" was considered.

In the particular case of sweetening ingredients or ingredients conveying sweetness that are also allergens, such as lactose, these were taken into account only when they appeared in the ingredient list or were mentioned at the end of the list preceded by words such as "contains" or "presence of". This means that if they were mentioned in precautionary labelling (notions of adventitious presence and traces), or preceded by words such as "may contain traces of", "traces of" or "possible presence of", they were not considered.

2.3 Data analysis

This study looked at the frequency of presence of classes of sweetening ingredients or ingredients conveying sweetness and their combinations (simultaneous use of several different classes in the same product). The first part details the use of these classes based on the most recent data available (31 product categories). The second part looks at changes in the use of these classes in categories for which at least two collection campaigns were carried out (i.e. a subset consisting of 27 product categories). Note that indicators focusing more specifically on intense sweeteners were also produced for each of these two parts. In addition, for the available updated data, a further study examined changes in the use of sweetening ingredients or ingredients conveying sweetness in paired products (those present on the market at the time of both the first and second collections taken into account, whether they were strictly identical or reformulated), in order to study any reformulations that may have taken place between the two periods considered. Each indicator has been broken down as follows:

- all products combined (all products regardless of product category or type of brand);
- by product category (grouping of products that are homogeneous according to one or more criteria, such as the main ingredient (e.g. milk for dairy products or cocoa for chocolate products), the consumption occasion (e.g. aperitif for the Crackers category), etc.);
- by type of brand (six are considered in this report: national brands, retailer brands, entry-level retailer brands, hard discount, specialised retailer brands and specialised organic retailer brands).

Note that among these types of brands, OQALI currently provides insufficient coverage of specialised organic retailer brands. This is because they were not present in the earliest data collections and/or their data for certain frozen food categories are very poorly represented in this type of brand. For this reason, the indicators relating to type of brand do not include results
for specialised organic retailer brands in the remainder of this study. It is also important to note that the use of intense sweeteners and bulk sweeteners is prohibited in organic products (Commission 2008). Products in this type of brand, which have been taken into account in the indicators for all products combined and by product category, therefore contribute to reducing the share of products containing a sweetener. All the definitions of OQALI categories and types of brands are presented in Annex 1.

Lastly, because the same product may contain several different classes of sweetening ingredients or ingredients conveying sweetness, it is not possible to add the proportions together for the indicators considering the different classes independently

3. REVIEW OF THE FREQUENCY OF PRESENCE OF SWEETENING INGREDIENTS OR INGREDIENTS CONVEYING SWEETNESS IN THE 31 PRODUCT CATEGORIES CURRENTLY MONITORED BY OQALI

3.1 Presentation of the data used

Table 2 lists the 31 product categories studied (representing all the categories of processed foods available on the French market), as well as the number of products taken into account for this review part. The most recent data available were collected between 2012 and 2020, depending on the category.

Table 2: List of the $\mathbf{3 1}$ food categories currently monitored by OQALI and numbers of products concerned (most recent data per category).

Product category	Year(s) of most recent data collection	Number of products taken into account	Estimated coverage*
Baby food	2012	976	88\%
Crackers	2013	1082	59\%
Cereal bars	2016	181	82\%
Cakes and biscuits	2018	3120	76\%
Soft drinks	2019	2343	82\%
Soups and broths	2017	788	66\%
Breakfast cereals	2018	659	87\%
Delicatessen meats	2013	1722	64\%
Chocolate products	2012	1013	74\%
Fruit purées, compotes and desserts	2017	972	90\%
Confectionery	2017	1255	78\%
Jams	2017	781	81\%
Canned fruits	2017	245	76\%
Cheeses	2015	2004	74\%
Ice-creams and sorbets	2015	1953	87\%
Fruit juices and nectars	2013	1637	83\%
Infant milks	2012	129	89\%
Margarines	2016	109	86\%
Bread products	2019	1740	86\%
Ready-to-eat canned meals	2020	2672	67\%
Ready-to-eat fresh meals ${ }^{1}$	2016	1416	36\%
Ready-to-eat frozen meals	2020	2108	76\%
Dessert mixes	2013-2014	329	76\%
Fresh dairy products and desserts	2017	3115	87\%
Fresh delicatessen products	2015	2293	58\%
Processed potato products	2017	791	85\%
Hot sauces	2017	609	78\%
Cold sauces	2016	623	80\%
Syrups	2019	681	90\%
Frozen snacking products	2018	1147	80\%
Frozen pastries and desserts	2018	608	75\%
All product categories	2012-2020	39101	77\% ${ }^{2}$

* Ratio of product volumes identified by OQALI to the total market volume characterised by Kantar Worldpanel
${ }^{1}$ For the Ready-to-eat fresh meals category, as 2020 data were not available at the time of processing sweetening ingredients or ingredients conveying sweetness, the most recent data at that time were used, i.e. data from 2016
${ }^{2}$ Average estimated coverage by category

Coverage rates ${ }^{3}$ for products collected by OQALI varied depending on the categories (data from Kantar - Worldpanel ${ }^{4}$). However, the coverages presented are underestimated because some products found on the market could not be assigned precisely to a line in the database provided by Kantar Worldpanel and, conversely, some products in the Kantar Worldpanel database were not found among the products collected by OQALI.

In comparison with the category studies published by OQALI, some products have not been considered in this report, such as:

- products from out-of-home catering, central purchasing agencies and pharmacies, as these could not be collected for all categories;
- products for which ingredient lists were unavailable, except for products in the Cheeses category, as the regulations do not require them to provide a list of ingredients on the packaging (European Parliament and Council 2011)5.

Thus, 39,101 products were included in this part constituting the baseline for the frequency of presence of sweetening ingredients or ingredients conveying sweetness.

It should be noted that the results in this part may differ from those of studies already published by OQALI. Indeed, when making corrections to the OQALI database, the scope of the studies or any information studied in the OQALI reports may have been modified or corrected. This study was carried out using corrected updated data.

[^1]
3.2 Frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness

3.2.1 All products combined

Among the 39,101 products studied, all products combined (31 categories currently monitored by OQALI), $77 \%(n=30,034)$ mentioned at least one sweetening ingredient or ingredient conveying sweetness (as considered by OQALI) in their ingredient list (Figure 1), and $23 \%(\mathrm{n}=9,067)$ did not therefore mention any.

Figure 1: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, all products combined (among the 31 food categories currently considered by OQALI)

Studies have also looked at the presence of sweetening ingredients in several other countries. However, their definition of ingredients regarded as sweeteners is more restrictive than that used in the OQALI study. In order to be able to compare their results with those of this study, the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness was recalculated, counting as sweeteners only those ingredients systematically considered in these other studies ${ }^{6}$. Under these conditions, therefore, 69% of processed food products available on the French market contained at least one sweetening ingredient ($\mathrm{n}=26,942$). By way of comparison, a Canadian study (Acton et al. 2017) examined the presence of added sugars in 40,829 products on the Canadian market in March 2015. Among the products considered, 66% contained at least one added sugar. Another publication (Probst et al. 2017) studied the addition of sugars and intense sweeteners to products on the Australian market, collected in 2012 (5,744 products with an ingredient list): they were found in 68.5% $(\mathrm{n}=3,935)$ of the products monitored. A third study (Dunford et al. 2018) looked at the presence of ingredients regarded as added sugars for four different countries: Australia, Mexico, New Zealand and the United States (out of a total of 332,402 products between 2015 and 2017). The proportion of products containing at least one added sweetening ingredient varied from 46% in Mexico to 61% in New Zealand. The result observed by OQALI is consistent with these studies, although slightly higher. This can be explained by the scope of the products considered: the

[^2]OQALI study was more restricted, taking only processed food products into account, whereas the other studies were based on packaged foods, which can include fruit/vegetables/nuts/pulses, unflavoured milks and bread, for example. By definition, these products contain no added sugars, thereby limiting the total percentage of products containing at least one sweetening ingredient.

3.2.2 By product category

In 27 of the 31 product categories studied, more than $\mathbf{5 0 \%}$ of products contained at least one sweetening ingredient or ingredient conveying sweetness (Figure 2). As expected, the categories with the highest proportions of products containing at least one sweetening ingredient or ingredient conveying sweetness corresponded to those that tended to have a sweet connotation. Indeed, the categories containing at least 95% were: Ice creams and sorbets (100\%), Jams (100\%), Canned fruits (100\%), Cereal bars (100\%), Confectionery (99.9\%), Cakes and biscuits (99.9\%), Frozen pastries and desserts (99.5\%), Chocolate products (99\%), Syrups (99%) and Fruit juices and nectars (95%). However, 10 of the $\mathbf{2 7}$ categories had a more savoury connotation: Cold sauces (94\%), Frozen snacking products (87% of products), Delicatessen meats (84\%), Hot sauces (81\%), Fresh delicatessen products (77\%), Ready-to-eat fresh meals (71\%), Soups and broths (59\%), Ready-to-eat frozen meals (59\%), Ready-to-eat canned meals (54\%) and Crackers (53\%).

Figure 2: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, by food category (among the 31 categories currently considered by OQALI; sorted in descending order of the proportion of products with sweetening ingredients or ingredients conveying sweetness)

The Margarines and Cheeses categories had the lowest proportions of products with at least one sweetening ingredient or ingredient conveying sweetness (with 13% and 5% of their products, respectively).

Note that for certain categories with a sweet connotation, a few products stood out due to the absence of any sweetening ingredients or ingredients conveying sweetness. These special cases are explained below:

- Confectionery: only one product had no sweetening ingredients or ingredients conveying sweetness. It concerned propolis-based gummies that claimed to have no added sugars;
- Cakes and biscuits: three products had no sweetening ingredients or ingredients conveying sweetness. They were fruit or carrot biscuits claiming to have "no added sugars";
- Chocolate products: among other things, this category includes products such as unsweetened cocoa powder, which explains why a small share of its offering had no sweetening ingredients or ingredients conveying sweetness;
- Syrups: six products corresponding to aniseed-flavoured beverages and flavoured liquorice concentrates for dilution did not contain any sweetening ingredients or ingredients conveying sweetness;
- Fruit juices and nectars: 5\% of products (n=80) in this category had no sweetening ingredients or ingredients conveying sweetness. Most of these were vegetable juices (mainly tomato, carrot or beetroot juices; vegetable juices were not regarded as sweetening ingredients or ingredients conveying sweetness in this study, unlike fruit juices and their derivatives, see Table 1). Fruit juices and nectars were also concerned: this can be explained either, in the vast majority of cases, by the fact that the ingredient list only mentions the fruit or fruits (with or without added water), without saying whether the fruit is in the form of juice, extract, concentrate, etc.; or because the ingredient list only indicates fruit in purée form. According to the classification drawn up, a fruit is only considered as a sweetening ingredient or ingredient conveying sweetness when a part extracted from the fruit is used. A whole fruit is not conventionally regarded as a sweetening ingredient or ingredient conveying sweetness. This clearly illustrates how the results of this study are dependent on the way in which the ingredient lists are labelled.

As with the previous part and in order to be able to compare our data with other studies, the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness per product category was recalculated, counting as sweeteners only those ingredients systematically considered in these other studies ${ }^{7}$. The corresponding results are shown in Annex 2. These results are consistent with those observed for other countries, even if there were differences in the collection years and scope for a given product category, which explain some of the discrepancies observed (as a reminder, the scope of OQALI covered processed food products, whereas the other studies took all packaged foods into account, including products not monitored by OQALI). For example, the ice cream category contained the highest proportion of products with at least one added sugar for the four countries studied by

[^3]Dunford et al. (Dunford et al. 2018) (97.7\% for Australia, 93.5\% for New Zealand, 86.0\% for the United States and 81.7% for Mexico). In the OQALI Ice creams and sorbets category, almost all products contained at least one sweetening ingredient (99.9\%). In addition, the Canadian study (Acton et al. 2017) showed a high frequency of presence in the cereals and beverages categories, with 85.7% and 78.7%, respectively, of products containing at least one added sugar. This confirmed the results observed for similar OQALI categories, with a high proportion of products containing at least one sweetening ingredient: Cereal bars (100\%), Breakfast cereals (89\%), Syrups (86%) and Soft drinks (75%). Similarly, sweetening ingredients were found in 98.1% of Australian confectionery products (Probst et al. 2017) and 81% of products in the OQALI category (the difference can be explained by the inclusion of sweeteners in the Australian study), and in 81.9% of Australian sauces and condiments, compared with 91% and 79%, respectively, for the OQALI Cold sauces and Hot sauces categories (note that condiments are excluded from the Cold sauces category, which partly explains the higher figure for OQALI). In the OQALI Bread products category, 74% of products had at least one sweetening ingredient or ingredient conveying sweetness, while in the bread and bakery products category of the Australian study the figure was 79.7\%. The study covering Australia, Mexico, New Zealand and the United States (Dunford et al. 2018) also showed that this proportion could differ according to category and country. Thus, the figures ranged from 30% for the Mexican beverages category to 59% for its New Zealand equivalent.

3.2.3 By type of brand

In all five types of brands studied, more than 75% of products had at least one sweetening ingredient or ingredient conveying sweetness (Figure 3).

Figure 3: Breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, by type of brand (among the 31 food categories currently considered by OQALI)

The variations observed between types of brands are partly due to differences between their respective product offerings: several food categories with a large share of products containing sweetening ingredients or ingredients conveying sweetness were more heavily represented in certain types of brands. The results for specialised retailer brands can be explained by the fact that this type of brand has an offering concentrated in seven of the 31
categories studied, and in particular those with among the highest proportions of products containing at least one sweetening ingredient or ingredient conveying sweetness: Ice creams and sorbets, Frozen pastries and desserts and, to a lesser extent, Frozen snacking products and Ready-to-eat frozen meals. Hard discount includes a large proportion of Cereal bars, Cakes and biscuits, Chocolate products and Canned fruits. Conversely, national brands have a higher share of products in categories with a lower proportion of products with sweetening ingredients or ingredients conveying sweetness, such as Margarines, Baby food and, to a lesser extent, Soups and broths. This may partly explain the slightly lower proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness observed in this type of brand.

A table detailing the numbers and proportions of products by category and type of brand is available in Annex 3.

3.3 Frequency of presence of classes of sweetening ingredients or ingredients conveying sweetness

This section details the study of the frequency of presence of sweetening ingredients or ingredients conveying sweetness, by class, based on the most recent data available for the 31 product categories currently monitored by OQALI. As a reminder, because the same product may contain several different classes of sweetening ingredients or ingredients conveying sweetness, it is not possible to add the proportions together.

3.3.1 All products combined

The most heavily represented class was Sucrose, contained in 58\% of the products considered ($\mathrm{n}=22,710$; Figure 4). As a reminder, this class groups together ingredients containing sucrose or mentioning "sugar".

Figure 4: Proportion of products containing at least the class of sweetening ingredients or ingredients conveying sweetness considered, all products combined (among the 31 food categories currently considered by OQALI, i.e. $\mathbf{3 9 , 1 0 1}$ products studied; sorted in descending order of the proportion of products)

The four other classes of sweetening ingredients or ingredients conveying sweetness for which a frequency of presence greater than $\mathbf{1 0 \%}$ was observed were Syrups ($\mathrm{n}=9,396$; 24%), Fruit juices and concentrates ($\mathrm{n}=7,834 ; 20 \%$), Other sugars ($\mathrm{n}=6,407 ; 16 \%$) and Lactose ($\mathrm{n}=4,488$; 11\%).

The six remaining classes of sweetening ingredients or ingredients conveying sweetness were found in 5% or less of products. In particular, Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness had a very low frequency of presence ($\mathrm{n}=89 ; 0.2 \%$). As its name suggests, this class groups together flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness. However, a flavouring does not necessarily have to be accompanied by information about the flavour it imparts (European Parliament and Council 2008a). This means that only products mentioning a flavour corresponding to a sweetening ingredient or ingredient conveying sweetness were counted in this study. It is therefore likely that the result for this class is underestimated (relatively few products mention the flavour of the flavouring(s) used in the ingredient list).

By way of comparison, two studies (Acton et al. 2017, Probst et al. 2017) found that the term "sugar" was most commonly found in the ingredient lists considered ($n=21,869$ or 53.6% in Canada (Acton et al. 2017) and $\mathrm{n}=21,869$ or 60.6% in Australia (Probst et al. 2017)). In addition, the Australian study indicated that after sugar, syrups were the most commonly used sweetening ingredients (18.7\% of products), followed by glucose and dextrose (13.1\%; these two were grouped together in the "Other sugars" class for the OQALI study). It should be noted that the scope of the products studied was not the same for each of these studies and that their classification of sweetening ingredients or ingredients conveying sweetness was somewhat different from that used by OQALI (based on isolated ingredients and not grouped into classes). Despite differences in the definition of the ingredients and categories studied, the Lactose class appeared to be found more frequently in the ingredient lists of OQALI products than in those of the products in the Canadian study (Acton et al. 2017) (16\% and 2.2%, respectively, all categories combined). In the European Union, it is mandatory to declare ingredients that cause allergies (e.g. milk) or intolerances (e.g. lactose) (European Parliament and Council 2011). For Canada, a food allergen is any protein, modified or not (including any protein fraction) derived from almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios or walnuts, peanuts, sesame seeds, wheat or triticale, eggs, milk, soybeans, crustaceans, molluscs, fish or mustard seeds (Ministre de la Justice 2023). As lactose is not regarded as an allergen, it is not mandatory to declare its presence in an ingredient (such as a "flavouring (contains lactose)"). The frequency of presence of lactose noted by the Canadian study therefore corresponds solely to the addition of the ingredient lactose, unlike the results observed for France, where it was not possible to distinguish lactose mentioned for its allergenic nature from lactose added as a constituent ingredient of the product, in the ingredient lists. Caramel was found in 6% of the ingredient lists studied by OQALI and 0.7% of the Canadian lists. Conversely, it appears that honey was more frequently identified in Canadian products than the Honey class was in the products studied by OQALI (3.9% and 2%, respectively, for all categories combined). Moreover, regarding intense sweeteners, the study by Dunford et al. (Dunford et al. 2018) compared the presence of this type of ingredient in 332,402 products collected from four countries (Australia, Mexico, New Zealand and the United States). Among these products, 5\% contained at least one intense sweetener, with disparities between countries: 0.9% of products in Australia compared with 11% in Mexico. According to the OQALI study, France, with 2% of processed food products containing at least one intense sweetener, falls between New Zealand (1.4\%) and the United States (4.4\%). Note also that the products in the other four countries were collected between 2015 and 2017, whereas the collection period for the OQALI study was longer and depended on the category (Table 2). In addition, a Spanish study (Beltra et al. 2022) indicated that 9.3% of the products collected from the Spanish market between 2017 and 2022 (a total of 4,218 products) used at least one sweetener (either bulk sweeteners such as polyols or intense sweeteners). This proportion was higher compared with the OQALI data, for which 3% of products contained at least one bulk sweetener and 2% at least one intense sweetener. This seems to be explained by the fact that the Spanish study did not exhaustively cover fresh foods, with the exception of fish and seafood products, and that retailer brand products were not collected (Ropero, Blain, and Beltra 2020).

3.3.2 By product category and by type of brand

This section details the frequency of presence for each of the 11 classes of sweetening ingredients or ingredients conveying sweetness, by product category and by type of brand.

3.3.2.1 Sucrose class

By product category

The Sucrose class, which had the highest frequency of presence in all products combined, was found in $\mathbf{3 0}$ of the $\mathbf{3 1}$ categories currently monitored by OQALI, with frequency values ranging from $1 \%(n=21)$ for the Cheeses category to $100 \%(n=181)$ for the Cereal bars category (Figure 5).

Figure 5: Proportion of products with at least one ingredient in the Sucrose class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Sucrose class)

In the majority of product categories (19 out of the 31 studied), more than half of the product offerings contained at least one ingredient in the Sucrose class. Most of these categories had a sweet connotation, such as Frozen pastries and desserts (99% of products containing at least one ingredient from the Sucrose class; n=602), Ice creams and sorbets (99%; $\mathrm{n}=1,929$), Chocolate products (98%; n=988), Cakes and biscuits (97%; n=3,030) and Jams (92%; $\mathrm{n}=720$) (Figure 5). However, in four categories with a more savoury connotation, more than half of the products also had at least one ingredient from this class:

- Cold sauces (71\%; n=441), mainly tomato-based sauces, mayonnaises and low-fat vinaigrettes;
- Hot sauces (70\%; n=428): mostly in tomato-based sauces;
- Frozen snacking products (56\%; n=643), where sucrose ingredients were found in pizza dough and/or toppings, in product sauces and in bread;
- Fresh delicatessen products (52\%; $\mathrm{n}=1,203$), mainly in sauces used to dress salads, surimi (crab sticks) and bread, as well as sauces used in sandwiches and pizza or crepe dough (note that this last category also includes desserts).

Other categories with a savoury connotation also had a significant proportion of products containing at least one ingredient in the Sucrose class, such as:

- Soups and broths (45\%);
- Ready-to-eat canned meals (39\%, particularly in sauces and seasonings, as well as in cured meats and sausages);
- Ready-to-eat fresh meals (38\%, also found in sauces, marinated meats and stuffings);
- Crackers (36\%, partly found in seasonings/flavouring bases for products and in dried or candied fruit);
- Delicatessen meats (30\%, particularly in sausages, dry sausages and hams);
- Ready-to-eat frozen meals (28\%, particularly in vegetable/fish/poultry stocks, seasoning, sauces or marinades and breadcrumbs);
- Processed potato products (14\%, particularly in flavoured crisps).

The presence of the Sucrose class in a few products in the Cheeses category (1%; $\mathrm{n}=21$) can be explained by the presence of breadsticks accompanying processed cheese or a processed cheese speciality, products such as flavoured processed cheese, or aperitif cheese bites with fillings or inclusions (such as sweetened dried fruit).

Lastly, only the Margarines category had no products with an ingredient from this class.
By way of comparison, the Australian study (Probst et al.2017) showed that the term "sugar" was the most commonly found in 14 of the 21 categories studied, including confectionery ($\mathrm{n}=730 ; 87.5 \%$) and bread and bakery products ($\mathrm{n}=870 ; 74.0 \%$). The proportions observed in the OQALI data were slightly lower: 79\% for the Confectionery category ($\mathrm{n}=989$) and 68% for the Bread products category ($\mathrm{n}=1179$).

By type of brand

The Sucrose class was found in more than half of the products in each of the five types of brands studied, with relatively similar frequency values ranging from 55% ($\mathrm{n}=682$) for entrylevel retailer brands to $62 \%(n=1,356)$ for specialised retailer brands (Figure 6).

The numbers in brackets at type of brand level represent the number of products containing at least the class of sweetening ingredients or ingredients conveying sweetness studied, for the type of brand considered
${ }^{1}$ As specialised retailer brands were present in only seven product categories out of the 31 studied (Baby food, Soups and broths, Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

Study of sweetening ingredients or ingredients conveying sweetness - OQALI - 2024 Edition
Figure 6: Proportion of products with at least one ingredient in the Sucrose class, by type of brand (among the 31 food categories currently monitored by OQALI).

As a reminder, specialised retailer brands focus on frozen foods, including the Ice creams and sorbets and Frozen pastries and desserts categories: 99\% of the products in these categories contained at least one ingredient from this class (Figure 5). They therefore contributed to the high proportion of products with at least one ingredient from the Sucrose class found in this type of brand.

3.3.2.2 Syrups class

By product category

The Syrups class was found in 30 of the 31 product categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(\mathrm{n}=3)$ for the Cheeses category to 99% ($\mathrm{n}=179$) for the Cereal bars category (Figure 7).

Figure 7: Proportion of products with at least one ingredient in the Syrups class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Syrups class).

Besides Cereal bars, Syrups were present in the majority of ingredient lists in categories with a sweet connotation, such as Ice creams and sorbets ($n=1,850$; 95\%), Confectionery (76%; $n=951$), Cakes and biscuits (55%; $n=1,703$) and Frozen pastries and desserts (54%; $\mathrm{n}=331$) (Figure 7).

Note that frequency of presence values of at least 20% were found in a few categories with a savoury connotation:

- Cold sauces (23\%; n=145), mainly in emulsified sauces such as burger sauce, ketchups and non-emulsified sauces such as barbecue sauce;
- Frozen snacking products (22%; $\mathrm{n}=256$), mainly due to the presence of ham, bechamel sauce or cured meat used in products in this category;
- Fresh delicatessen products (21%; $\mathrm{n}=478$), mainly products with ham, lardons or bacon, cured meats and products using sauces such as ketchup or mayonnaise;
- Crackers ($20 \%, \mathrm{n}=218$), mainly in products such as salted cocktail crackers, tuile biscuits, salted crepes dentelles and puffs.

In other categories with a savoury connotation, between 10% and 20% of products contained an ingredient from this class: Delicatessen meats (18\%, mainly in hams, and cooked and dry sausages), Soups and broths (16%), Ready-to-eat fresh meals (16%, mainly in products using delicatessen meat products such as ham, chorizo, bacon, merguez, cooked sausages and marinated or cured meat), Hot sauces (12%, mainly in meat/vegetable stocks).

By type of brand

The Syrups class was found in every type of brand, with frequencies ranging from 22% for national brands ($\mathrm{n}=3,044$) and retailer brands ($\mathrm{n}=3,677$) to 43% for specialised retailer brands ($\mathrm{n}=950$) (Figure 8). These differences can be at least partly explained by the respective offerings of the different types of brands.

The numbers in brackets at type of brand level represent the number of products containing at least the class of sweetening ingredients or ingredients conveying sweetness studied, for the type of brand considered
As specialised ret
(Baby food, Soups and broths, Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

Figure 8: Proportion of products with at least one ingredient in the Syrups class, by type of brand (among the 31 food categories currently monitored by OQALI).

For example, the two "budget price" types of brands (entry-level retailer brands and hard discount products) offer a wide range of products in the Cakes and biscuits and Ice creams and sorbets categories. These two product categories respectively accounted for 55% and 95% of products with an ingredient from the Syrups class, which partly explains the higher proportion than that observed for national brands and retailer brands. Furthermore, depending on the product category, it appears that the "budget price" types of brands use ingredients from the Syrups class slightly more often in their products. Thus, in the Ice creams and sorbets category, all entry-level retailer brands and almost all hard discount products (98\%) used this class of sweetening ingredients or ingredients conveying sweetness, while the proportion was 96% for retailer brands, 94% for national brands and 93% for specialised retailer brands.

As a reminder, specialised retailer brands focus on frozen foods, including the Ice creams and sorbets and Frozen pastries and desserts categories: they therefore made a major contribution to the proportion of products with at least one ingredient from the Syrups class in this type of brand.

3.3.2.3 Fruit juices and concentrates class

By product category

The Fruit juices and concentrates class was found in 30 of the 31 product categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(n=1)$ in the Delicatessen meats category to $90 \%(n=1,478)$ in the Fruit juices and nectars category (Figure 9).

Number of products containing this class: $n=7834$

ers in brackets at catery level represent the number
of products containing the class of sweetening ingredients or
ingredients conveying sweetness, for the category considered
Figure 9: Proportion of products with at least one ingredient in the Fruit juices and concentrates class, by food category ($\mathbf{3 1}$ categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Fruit juices and concentrates class).

In five of these categories, more than $\mathbf{3 0 \%}$ of products contained at least one ingredient from this class. They tended to have a sweet connotation and were largely (if not entirely) made from fruit juice and/or concentrates. Besides Fruit juices and nectars, a high proportion of products containing this class was observed in the Syrups (76\%; n=516), Soft drinks (54\%; $\mathrm{n}=1,262$) and Jams ($38 \% \mathrm{n}=293$) categories (Figure 9). Note that not all the products in the Fruit juices and nectars category were presented as containing at least one ingredient from this class, as some ingredient lists only indicated the fruit without mentioning the state, or specified that they contained fruit purées. These are not regarded as sweetening ingredients or ingredients conveying sweetness. The fifth category, Cold sauces, had a more savoury connotation and 42% of its products ($n=259$) contained at least one ingredient from the Fruit juices and concentrates class (Figure 9), mainly lemon juice (in concentrated form or not, or from concentrate).

In seven other categories with a savoury connotation, 10% or more of the products contained at least one ingredient from the Fruit juices and concentrates class. These categories were Fresh delicatessen products (22\%; n=495), Ready-to-eat frozen meals (15\%; n=311), Ready-to-eat canned meals (15%; n=389), Frozen snacking products (14%; n=166), Hot sauces (12%; n=75), Ready-to-eat fresh meals (11\%; n=152) and Margarines (10\%; n=11) (Figure 9). As with Cold sauces, this was due to the fact that these categories used lemon juice (in concentrated form or not, or from concentrate).

By type of brand

Fruit juices and concentrates were found in every type of brand, with frequency values ranging from 15% for entry-level retailer brands ($\mathrm{n}=190$) and hard discount products ($\mathrm{n}=755$) to 24% for specialised retailer brands ($\mathrm{n}=529$) (Figure 10).

Figure 10: Proportion of products with at least one ingredient in the Fruit juices and concentrates class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

These differences can be partly explained by the respective offerings of the different types of brands, with national brands and retailer brands offering many products in the Fruit juices and nectars and Soft drinks categories (with 90% and 54%, respectively, of products containing at least one ingredient from the Fruit juices and concentrates class; Figure 9) compared with products from the hard discount and entry-level retailer brands in particular.

3.3.2.4 Other sugars 8 class

By product category

The Other sugars class was found in 28 of the $\mathbf{3 1}$ product categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(n=1)$ for the Fruit juices and nectars category to 65% for the Cereal bars ($\mathrm{n}=118$) and Delicatessen meats ($\mathrm{n}=1,112$) categories (Figure 11).

[^4]

Figure 11: Proportion of products with at least one ingredient in the Other sugars class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Other sugars class).

In eight of these categories, more than $\mathbf{2 0 \%}$ of products contained at least one ingredient from this class. With the exception of the Cereal bars and Ice creams and sorbets categories (24%; $n=468$), the other six categories had a more savoury connotation: Delicatessen meats (65%; $n=1,112$), Frozen snacking products (50%; $n=571$), Fresh delicatessen products (40%; n=914), Ready-to-eat fresh meals (36%; n=516), Processed potato products (35%; $n=276$) and Ready-to-eat frozen meals (25%; $n=523$) (Figure 11). For these six categories, this can be explained by the use of dextrose. It has multiple roles in Delicatessen meat products. It is mainly used for preservation, as it can bind to water molecules, preventing them from being used by micro-organisms to grow. In cured products, dextrose facilitates the diffusion of salt and enables certain micro-organisms to react with nitrites and myoglobin to give the products a pink/red colour (particularly in dried meats and ham). Note also that in addition to sucrose, the sweet taste of dextrose can be used to counterbalance the bitterness of liver mousses and pâtés (Solignat 2004). Lastly, it also plays a part in the Maillard reaction, which produces a brown colour and grilled/braised flavours, for example in braised cooked hams or products such as pâté in pastry (in which the reaction takes place in the dextrose contained in the pastry) (Solignat 2004). In the Frozen snacking products, Fresh delicatessen products, Ready-to-eat fresh meals and Ready-to-eat frozen meals categories, dextrose is found in products using delicatessen meats (cordon bleu with cured turkey fillet, couscous with merguez, ham pancakes/crepes, croque monsieur, tartiflette with lardons, paella with chorizo, etc.). In Processed potato products, dextrose is mainly used in pre-fried products (probably to give the product a golden colour when cooked at home) and, to a lesser extent, in seasonings/flavouring bases for crisps.

Lastly, in a few categories, between 5% and 15% of products had at least one ingredient from this class: Crackers (14\%; n=154), Cold sauces (10%; $n=65$) and Ready-to-eat canned meals (9%; $n=233$). As with the previous categories, dextrose was the main ingredient found. In the Crackers category, as with Processed potato products, it is used in seasonings/flavouring bases for products. In the Cold sauces category, it is mainly found in emulsified sauces, particularly tomato-based and/or red wine-based. Lastly, as with the other categories of ready meals, dextrose is found in delicatessen meat or cured meat products in the Ready-to-eat canned meals category.

By type of brand

The Other sugars class was found in every type of brand, with frequencies varying according to the type of brand: from 13% for national brands ($n=1,708$) to 31% for specialised retailer brands ($\mathrm{n}=684$) (Figure 12). These differences can be explained by the respective offerings of the different types of brands.

Figure 12: Proportion of products with at least one ingredient in the Other sugars class, by type of brand (among the 31 food categories currently monitored by OQALI).

Note that the two "budget price" types of brands offer a wider range of products in the Delicatessen meats and Fresh delicatessen products categories than the national brands and retailer brands. In these two categories, 65% and 40% of products, respectively, had an ingredient from the Other sugars class, which partly explains the difference in proportion between these types of brands. To a lesser extent, the Processed potato products category also contributed to the high proportion of products containing the Other Sugars class observed for entry-level retailer brands, while the Ready-to-eat frozen meals, Ready-to-eat fresh meals and Frozen snacking products categories also contributed to the proportion observed for hard discount products.

As a reminder, and as with the previous classes, specialised retailer brands focus on frozen foods. Thus, the Ice creams and sorbets, Frozen snacking products and Ready-to-eat frozen meals categories, whose proportions of products with at least one ingredient from the Other sugars class were among the highest ($24 \%, 50 \%$ and 25%, respectively; Figure 11), contributed to the proportion of products containing this class for specialised retailer brands.

3.3.2.5 Lactose class

As a reminder, because lactose is an allergen, it must be declared in the ingredient list. The lactose counted in this study may therefore be present in the ingredient list due to its allergenic nature, even though it is not an ingredient as such (e.g. a flavour carrier).

By product category

The Lactose class was found in $\mathbf{2 6}$ of the $\mathbf{3 1}$ product categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(\mathrm{n}=1)$ for the Fruit purées, compotes and desserts category to 83\% for the Infant milks category ($\mathrm{n}=107$) (Figure 13).

Figure 13: Proportion of products with at least one ingredient in the Lactose class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Lactose class).

There was a high proportion of products containing at least one ingredient from the Lactose class among the Infant milks and the Ice creams and sorbets (61%; $n=1190$). In the Infant milks category, this ingredient is used to approximate the composition of breast milk. In the Ice creams and sorbets category, lactose is found mainly in ice cream-based products.

The other categories had a lower proportion of products, with 30% or less containing an ingredient from this class (Figure 13). In particular, eight categories had a frequency of presence of between 10% and 30%, four of which had a more savoury connotation. These were the Delicatessen meats (30%; n=516), Frozen snacking products (19\%; n=217), Ready-to-eat
fresh meals (12\%; $n=164$) and Fresh delicatessen products (11\%; $n=260$) categories. As with dextrose, the ingredients from this class were found in delicatessen meat products. These ingredients are mainly used in dry and cooked sausages, chorizo and rosette. These products contain ferments that break down lactose to produce lactic acid, acidifying the environment and adding flavour and texture. In the Frozen snacking products and Fresh delicatessen products categories, lactose is also present in products containing bechamel sauce or white sauce, one of whose basic ingredients is milk. In certain products, the sauce preparation stated in the ingredient list contained lactose, which may be accompanied by whey and/or skimmed milk.

Note that in the Crackers and Processed potato products categories, 8\% ($\mathrm{n}=88$) and $5 \%(\mathrm{n}=36$) of products, respectively, had at least one ingredient from this class. Lactose is mainly found in seasonings and flavouring bases as a sub-ingredient or as a declared allergen (it may be used as a flavour carrier). Some cream-based mashed potatoes may also contain added lactose.

By type of brand

The Lactose class was found in every type of brand, with frequencies varying according to the type of brand: from 8% for national brands ($n=1,099$) to 22% for specialised retailer brands ($\mathrm{n}=478$) (Figure 14). These differences can be explained by the respective offerings of the different types of brands.

Figure 14: Proportion of products with at least one ingredient in the Lactose class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

Note that the two "budget price" types of brands offer a wider range of products in the Delicatessen meats, Ice creams and sorbets and Fresh dairy products and desserts categories than the national brands and retailer brands. In these three product categories, $30 \%, 61 \%$ and 16% of products, respectively, had an ingredient from the Lactose class, which partly explains the differences in proportions observed for these types of brands.

As a reminder, and as with the previous classes, specialised retailer brands focus on frozen foods. Thus, the Ice creams and sorbets and Frozen snacking products categories, which had among the highest proportions of products with at least one ingredient in the Lactose class (61% and 19%, respectively; Figure 13), contributed to the proportion of products containing this class for specialised retailer brands.

3.3.2.6 Caramel class

By product category

Overall, few products used an ingredient from the Caramel class, although it was present in 26 of the 31 product categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(n=1)$ for the Jams category to 19% for the Ice creams and sorbets category ($\mathrm{n}=365$) (Figure 15).

Figure 15: Proportion of products with at least one ingredient in the Caramel class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Caramel class).

In addition to Ice creams and sorbets, the categories with the highest proportions mostly had a sweet connotation:

- Syrups (15\%; $n=105$, mainly syrups and some concentrated beverages to dilute without added sugars);
- Confectionery (14\%; n=170);
- Soft drinks (12\%; n=289, mainly colas, energy drinks and some beers).

In five of the categories with a more savoury connotation, 5% or more of products had at least one ingredient from this class:

- Cold sauces (11\%; n=69, mainly in balsamic vinegar used in certain vinaigrettes, some emulsified sauces and some mayonnaises);
- Hot sauces (7\%; $n=45$, used as a colouring agent, mainly in sauces for meat);
- Delicatessen meats (7\%; n=112, also used as a colouring agent in the jelly of liver mousses and pâtés and in poultry roasts and hams);
- Ready-to-eat fresh meals (5\%; n=65);
- Fresh delicatessen products (5\%; n=104, used as a colouring agent and mainly found in the jelly of pâté in pastry as well as in vinegars, particularly balsamic vinegars in pasta salads or mixed salads, for example).

Note that in the Fresh dairy products and desserts category, the presence of at least one ingredient from this class (5\%; $n=161$) mainly but not exclusively concerned caramel-flavoured dessert creams and Liégeois desserts, because chocolate flavours may also contain an ingredient from this class.

Moreover, and across all product categories, the presence of the ingredient "caramel" was very often broken down into water and classes of sweetening ingredients or ingredients conveying sweetness such as sucrose and/or syrups. This study set out to select sweetening ingredients or ingredients conveying sweetness that had been broken down as far as possible. This means that in the above example of the deconstructed caramel ingredient, the Sucrose and/or Syrups class was counted rather than the Caramel class. This Caramel class was therefore more likely to contain additives such as E150a (plain caramel), E150b (caustic sulphite caramel), E150c (ammonia caramel) and E150d (sulphite ammonia caramel) used as colouring agents.

By type of brand

Overall, the Caramel class was found in similar proportions across all five types of brands studied, with frequency values ranging from $4 \%(n=47)$ for entry-level retailer brands to 6% ($\mathrm{n}=141$) for specialised retailer brands (Figure 16).

Figure 16: Proportion of products with at least one ingredient in the Caramel class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

As a reminder, specialised retailer brands focus on frozen foods, including the Ice creams and sorbets category, which makes great use of this Caramel class (19\% of its products; Figure 15).

3.3.2.7 Other ingredients conveying sugars ${ }^{9}$ class

By product category

Relatively few products used an ingredient from this class, although it was present in $\mathbf{2 5}$ of the 31 product categories currently monitored by OQALI, with frequency values ranging from $0.01 \%(n=1)$ for the Ready-to-eat canned meals category to 17% for the Ice creams and sorbets category ($\mathrm{n}=327$) (Figure 17).

The numbers in brackets at category level represent the number of products containing the class of sweetening ingredients or ingredients conveying sweetness, for the category
considered
This class groups together ingredients mentioning a "sweet" or "caramelised" state, candied fruit, oligosaccharides (except in syrup form) and formulated ingredients that have not been broken down

Figure 17: Proportion of products with at least one ingredient in the Other ingredients conveying sugars class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Other ingredients conveying sugars class).

Besides Ice creams and sorbets, in six other categories at least 8\% of products had at least one ingredient from this class. The vast majority of these categories tended to have a sweet connotation: Frozen pastries and desserts (16\%; n=99), Cereal bars (15\%; n=27), Chocolate products (13\%; $\mathrm{n}=130$), Breakfast cereals ($9 \% ; \mathrm{n}=62$) and Cakes and biscuits ($8 \% ; \mathrm{n}=262$) (Figure 17). Most of them contained the ingredient "hazelnut paste". In the Ice creams and sorbets, Chocolate products and Cakes and biscuits categories, the presence of sweetened milk that had not been broken down was also observed. Also of note was the presence of fibre in the form of inulin and/or oligofructose, particularly in Cakes and biscuits, Cereal bars and Breakfast cereals. In the Infant milks category (13\%; $n=17$), the products containing this class were essentially products enriched with galacto-oligosaccharides and/or fructo-oligosaccharides.

[^5]In categories with a more savoury connotation, 1% or less of products contained this class. Among these categories, those with a proportion of 1% were Frozen snacking products $(1 \%$; $\mathrm{n}=13$), Ready-to-eat fresh meals (1%; $\mathrm{n}=16$), Ready-to-eat frozen meals (1%; $\mathrm{n}=18$) and Soups and broths ($1 \% ; n=6$). Most of these products contain added fibre (inulin).

By type of brand

Not including the specialised retailer brands, the Other ingredients conveying sugars class was rarely used overall in the other four types of brands studied, with frequency values ranging from $1 \%(n=14)$ for entry-level retailer brands to $3 \% ~(n=472)$ for national brands (Figure 18).

The number
Considered
${ }^{1}$ As specialised retailer brands were present in only seven product categories out of the 31 studied (Baby food, Soups an
${ }^{2}$
Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

Figure 18: Proportion of products with at least one ingredient in the Other ingredients conveying sugars class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

As a reminder, specialised retailer brands focus on frozen foods, including the Ice creams and sorbets and Frozen pastries and desserts categories, which make particular use of this Other ingredients conveying sugars class in 17% and 16% of their products, respectively (Figure 17).

3.3.2.8 Bulk sweeteners class

By product category

Relatively few products used an ingredient from this class. It was found in 18 of the 31 product categories currently monitored by OQALI, with highly variable frequency values ranging from $0.04 \%(\mathrm{n}=1)$ for the Ready-to-eat canned meals category to 76% for the Cereal bars category ($\mathrm{n}=138$) (Figure 19).

Figure 19: Proportion of products with at least one ingredient in the Bulk sweeteners class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Bulk sweeteners class).

Besides Cereal bars, only two other categories had more than 10% of their products with at least one ingredient from this class. These were the Confectionery (26%; $n=331$) and Cakes and biscuits (12%; $n=374$) categories. The Cereal bars and Cakes and biscuits categories mainly use sorbitols for their stabilising properties. In the Confectionery category, sorbitols and/or maltitols were found most often in products, particularly those with no added sugars. According to the ingredient lists, these additives are used for their sweetening function. As a reminder, bulk sweeteners have a sweetening power less than or similar to that of sugar. As a comparison, the Spanish study (Beltra et al. 2022) also reported finding products containing bulk sweeteners in its cereals-sweet derivatives, and sweets and chocolates categories.

In categories with a more savoury connotation, such as Fresh delicatessen products and Crackers, $5 \%(\mathrm{n}=109)$ and $2 \%(\mathrm{n}=25)$ of the products, respectively, contained ingredients from this class, particularly sorbitols used as stabilisers, in plain surimi for Fresh delicatessen products and in mini choux pastries for Crackers.

Note that for the Jams category, the three products with at least one ingredient in this class corresponded to sweetened chestnut purées with pieces of candied chestnut, where sorbitols were used as stabilisers or humectants.

By type of brand

Bulk sweeteners were rarely used in any of the types of brands studied, with frequency values ranging from 1% for specialised retailer brands ($\mathrm{n}=26$) to 4% for entry-level retailer brands ($\mathrm{n}=44$) and hard discount products $(\mathrm{n}=198)$ (Figure 20).

Figure 20: Proportion of products with at least one ingredient in the Bulk sweeteners class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

As a reminder, specialised retailer brands focus on frozen foods that rarely use this class (Figure 19). This partly explains the low proportion of products ($1 \% ; n=26$) observed in this type of brand (Figure 20).

3.3.2.9 Intense sweeteners class

By product category

Very few products used an ingredient from this class. It was found in $\mathbf{1 8}$ of the $\mathbf{3 1}$ product categories currently monitored by OQALI, with frequency values ranging from $0.04 \%(\mathrm{n}=1)$ in the Ready-to-eat canned meals category to 19% in the Confectionery category ($\mathrm{n}=239$) (Figure 21).

Figure 21: Proportion of products with at least one ingredient in the Intense sweeteners class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Intense sweeteners class).

Besides Confectionery, the use of intense sweeteners was concentrated in three other categories: Soft drinks (17%; $\mathrm{n}=407$), Syrups ($11 \% ; \mathrm{n}=73$) and Fresh dairy products and desserts (4\%; n=123). For these categories, the products using one or more intense sweeteners were mainly those with no added sugars (Confectionery, Soft drinks, Syrups) or artificially- and sugar-sweetened products (Soft drinks), as well as sweetened low-fat products in the Fresh dairy products and desserts category. As these four categories were the ones making greatest use of intense sweeteners, they were the most relevant categories for conducting a more indepth study (see 3.5. Frequency of presence of intense sweeteners).

In the other 14 categories, 2% or less of products contained one or more intense sweeteners. Among these, Fruit juices and nectars and Cold sauces had the most, with 2% of their products ($\mathrm{n}=37$ and $\mathrm{n}=11$, respectively). The products concerned were nectars in the first category and mainly low-sugar ketchups in the second.

The study of the presence of intense sweeteners in products on the Australian, Mexican, New Zealand and American markets (Dunford et al. 2018) showed that the two product categories with the highest proportions of products containing at least one intense sweetener were beverages and dairy. As a reminder, there were differences between the collection years and the scope of the products compared with the OQALI study. Their beverages category encompassed the OQALI Soft drinks and Syrups categories. These two categories combined had a higher proportion of products containing at least one intense sweetener than the OQALI Confectionery category. Moreover, regarding dairy desserts, Australia and New Zealand had no products containing intense sweeteners, whereas they were found in 6% of American products and 34% of Mexican products. Note that for this category, firstly the scope of the products was probably
not the same and secondly, the product offering may differ within each country. Indeed, 3,115 products were collected in this category in France, while the study showed numbers ranging from 77 products (for Mexico) to 1,741 (for the United States). Furthermore, the OQALI results on intense sweeteners were supported by those of the Spanish study (Beltra et al. 2022), which showed that intense sweeteners were mainly found in the non-alcoholic drinks, dairies and substitutes, and sweets and chocolates categories.

By type of brand

The Intense sweeteners class was found in every type of brand, with a slightly higher frequency in national brands and entry-level retailer brands (4% and $n=532 ; 4 \%$ and $n=47$, respectively) compared with 2% for hard discount products ($\mathrm{n}=109$), 1% for retailer brands $(\mathrm{n}=234)$ and 0.2% for specialised retailer brands ($\mathrm{n}=4$) (Figure 22).

The numbers in brackets at type of brand level represent the number of products containing at least the class of sweetening ingredients or ingredients conveying sweetness studied, for the type of brand considered
As specialised retailer brands were present in only seven product categories out of the 31 studied (Baby food, Soups and broths, Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

Figure 22: Proportion of products with at least one ingredient in the Intense sweeteners class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

Note that national brands and entry-level retailer brands offer many products in the Soft drinks category. This category had one of the highest shares of products containing at least one intense sweetener (17\%; Figure 21), which partly explains the high proportion of products containing this class in these two types of brands. The Confectionery and Fresh dairy products and desserts categories also contributed to the high proportion observed for national brands.

As a reminder, specialised retailer brands focus on frozen foods that very rarely use this class (this type of brand did not have any products in the four categories that used intense sweeteners the most; Figure 21). This explains the low proportion (0.2%; $n=4$) observed for this type of brand (only Ice creams and sorbets) (Figure 21 and Figure 22).

3.3.2.10 Honey class

By product category

Very few products used an ingredient from this class, even though $\mathbf{2 5}$ of the $\mathbf{3 1}$ categories currently monitored by OQALI had at least one product using this class. The frequency values ranged from $0.1 \%(\mathrm{n}=1)$ for the Processed potato products category to 21% for the Breakfast
cereals category ($\mathrm{n}=137$) (Figure 23). In this last category, products using this class also usually had a name or sales description indicating the presence of honey.

Figure 23: Proportion of products with at least one ingredient in the Honey class, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Honey class).

Cereal bars was the category with the second highest proportion ($8 \% ; \mathrm{n}=14$). These products are cereal bars made from nuts and chocolate, with no mention of honey in either the name or the sales description.

In addition, in three categories, 4% of products contained at least one ingredient from this class. These were Confectionery ($\mathrm{n}=56$, mainly honey sweets and nougat-based sweets), Frozen snacking products ($\mathrm{n}=50$, mainly party loaves and cocktail canapés) and Cakes and biscuits ($\mathrm{n}=135$, mainly gingerbread, nonnettes or honey- or nougat-based products, although with some products, the presence of honey was not mentioned in the name and/or sales description).

By type of brand

The Honey class was used very little in any of the types of brands studied, with frequency values ranging from 1% for entry-level retailer brands ($n=8$) and hard discount products ($n=60$) to 5% for specialised retailer brands ($n=105$) (Figure 24).

Figure 24: Proportion of products with at least one ingredient in the Honey class, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

As a reminder, specialised retailer brands focus on frozen foods, including the Ice creams and sorbets and Ready-to-eat frozen meals categories, which used this Honey class in 3% and 2% of their products, respectively (Figure 23).

3.3.2.11 Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class

As a reminder, specifying the flavour provided by the flavouring(s) in the ingredient list is optional. This class only takes into account flavourings that specify a flavour evocative of a sweetening ingredient or ingredient conveying sweetness. The results presented may therefore be underestimated.

By product category

Fewer than 100 products used an ingredient from this class, and these were spread across 13 of the 31 categories currently monitored by OQALI, with frequency values ranging from $0.1 \%(\mathrm{n}=1)$ for the Syrups category to 2% for the Cereal bars ($\mathrm{n}=4$), Dessert mixes ($\mathrm{n}=7$) and Frozen pastries and desserts ($\mathrm{n}=10$) categories (Figure 25). These were essentially caramel flavourings (as well as a chocolate flavouring for Cereal bars).

Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by product category ($\mathbf{3 1}$ food categories currently monitored by OQALI)

Number of products containing this class: $n=89$

The numbers in brackets at category level represent the number
f products containing the class of sweetening ingredients or
of products containing the class of sweetening ingredients or
Study of sweetening ingredients or ingredients conveying sweetness - OQALI-2024 Edition
Figure 25: Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by food category ($\mathbf{3 1}$ categories currently monitored by OQALI; sorted in descending order of the proportion of products containing the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class).

By type of brand

The Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class was used very little in any of the five types of brands studied, with a frequency of presence below 0.5% (Figure 26).

Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by type of brand (among the 31 product categories currently monitored by 0QALI)

Number of products containing this class: $n=89$

The numbers in brackets at type of brand level represent the number of products containing at least the class of sweetening ingredients or ingredients conveying sweetness studied, for the type of
${ }^{1}$ As specialised retailer brands were present in only seven product categories out of the 31 studied (Baby food, Soups and broths, Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

Study of sweetening ingredients or ingredients conveying sweetness - OQALI - 2024 Edition
Figure 26: Proportion of products with at least one ingredient in the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness class, by type of brand (among the 31 food categories currently monitored by OQALI).

3.4 Combinations of classes of sweetening ingredients or ingredients conveying sweetness

This section looks at the use, alone or in combination, of classes of sweetening ingredients or ingredients conveying sweetness. Initially (Section 3.4.1), the number of different classes found simultaneously in the same product are studied. This is followed by a presentation of the details of the classes used alone or in combination (Section 3.4.2).

3.4.1 Study of the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the products

3.4.1.1 All products combined

Among all the products studied, the vast majority (59\%) used one class or a combination of two different classes of sweetening ingredients or ingredients conveying sweetness. Thus, $34 \%(n=13,117)$ of the products studied used only one class and $25 \%(n=9,953)$ used a combination of two classes. A few products used up to seven different classes simultaneously (0.05%; n=19).

Figure 27: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, all products combined (among the 31 food categories currently monitored by OQALI).

3.4.1.2 By product category

Not including the Cereal bars and Ice creams and sorbets categories, in the other 29 categories, the majority of products had no sweetening ingredients or ingredients conveying sweetness, or used either a single class or a combination of two different classes of sweetening ingredients or ingredients conveying sweetness (Figure 28).

Breakdown of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in their ingredient lists, by product category (in the 31 product categories currently considered by OQALI; sorted in descending order of the proportion of products with no sweetening ingredient or ingredient conveying sweetness)

The numbers in brackets at product category level represent the total number of products with an ingredient list for the given category
Study of sweetening ingredients or ingredients conveying sweetness - OQALI - 2024 Edition
Figure 28: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by food category (31 categories currently monitored by OQALI; sorted in descending order of the proportion of products with no sweetening ingredients or ingredients conveying sweetness)

A high proportion of products using three or more classes simultaneously was found in the Cereal bars (93% of products in this category) and Ice creams and sorbets (86%) categories. The products with five or more classes in the Cereal bars category corresponded to products with fruit and/or chocolate. In the Ice creams and sorbets category, the products using four or more classes most often corresponded to gourmet recipes with very elaborate flavours, sauces, inclusions and/or coatings.

Occasionally, in six of the 31 product categories studied, a few products combined seven different classes of sweetening ingredients or ingredients conveying sweetness. They were found in the Frozen pastries and desserts (1\%; n=6), Cereal bars (1\%; n=1), Ice creams and sorbets (0.3%; $n=6$), Chocolate products ($0.2 \% ; n=2$), Cakes and biscuits ($0.1 \% ; n=3$) and Frozen snacking products (0.1%; $n=1$) categories. Note that half of these products corresponded to assortments with a common ingredient list for all the items in the assortment: it is unlikely that each product of the assortment combined all seven classes, but it is not possible to link each ingredient to the different products of the assortment precisely. The other products corresponded to elaborate recipes mixing different elements (mainly fillings, sauces and/or inclusions).

A table summarising the numbers and proportions of products according to the number of different classes found in the same product, by product category, is provided in Annex 4.

3.4.1.3 By type of brand

Not including the specialised retailer brands, the types of brands all had the same overall proportions of products by number of combined classes, and these proportions corresponded to those observed for all products combined (Figure 27, Figure 29).

Figure 29: Breakdown of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by type of brand (among the 31 food categories currently monitored by OQALI; sorted in descending order of the proportion of products with no sweetening ingredients or ingredients conveying sweetness)

Specialised retailer brands were characterised by a slightly higher share of products combining a large number of different classes of sweetening ingredients or ingredients conveying sweetness, particularly combinations of three, four and five classes $(18 \%, 12 \%$ and 6%, respectively). This can be explained by an offer that is concentrated on certain product categories, all of which are frozen, with a high proportion of products combining several classes of sweetening ingredients or ingredients conveying sweetness, in particular the Ice creams and
sorbets category and, to a lesser extent, Frozen pastries and desserts and Frozen snacking products.

In addition, not including products from hard discount, all the types of brands had one or more products combining seven classes of sweetening ingredients or ingredients conveying sweetness (ranging from 0.03% for retailer brands to 0.3% for specialised retailer brands; Figure 29).

A table summarising the numbers and proportions of products per type of brand according to the number of different classes found simultaneously in the same product is provided in Annex 5.

3.4.2 Frequency of presence of combinations of classes of sweetening ingredients or ingredients conveying sweetness found in the products

The study of frequency of presence by combinations of classes of sweetening ingredients or ingredients conveying sweetness found 296 different combinations among all the products studied. These results, for all products combined, are available in Excel format on the OQALI website "Review in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrences without grouping ".

Of these 296 combinations, only 13 were used in 1% or more of the products. It was therefore decided to group together the classes that were absent from these 13 most commonly used combinations, i.e. Caramel, Other ingredients conveying sugars, Bulk sweeteners, Honey and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness, to form the "Other classes" combination. Note that the Intense sweeteners class was not found among the 13 most commonly used combinations, but as particular attention is being paid to these substances, they were not included in "Other classes".

3.4.2.1 All products combined

After grouping the classes together (as mentioned above), 97 different combinations were found for all products combined, with 16 combinations present in 1% or more of products. Again, combinations whose frequency of presence was below 1%, all products combined, were grouped together in "Other combinations". Seventeen combinations have therefore been detailed below. These same groupings were used to conduct analyses by product category and type of brand. Note that combinations including substances from the Intense sweeteners class, which was not included in "Other classes", were used very little and have therefore been added to "Other combinations". The results without this grouping are available in Excel format on the OQALI website "Review in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrences with group_prod".

A table summarising the numbers and proportions of products by combination of most commonly used classes of sweetening ingredients or ingredients conveying sweetness, for all products combined, is provided in Annex 6.

The Sucrose class used alone had the highest frequency of presence (20%; $\mathrm{n}=7,927$; Figure 30 and Annex 6), all products combined (among the 31 product categories currently monitored by OQALI). The "Other combinations" group had the second highest frequency of
presence (13% of products, i.e. $\mathrm{n}=5,030$; Figure 30 and Annex 6). As a reminder, it groups together 81 different combinations. This indicates a great diversity of combinations each found in a small number of products.

In addition, the Sucrose class was used in combination with other classes, mainly Fruit juices and concentrates and Syrups (Figure 30 and Annex 6). Thus, of the 17 combinations most frequently found in products, 10 involved the Sucrose class combined with one or more other classes of sweetening ingredients or ingredients conveying sweetness (30%; $\mathrm{n}=11,845$). Fruit juices and concentrates/Sucrose and Syrup/Sucrose combinations were found in 7% of products ($\mathrm{n}=2,753$ and $\mathrm{n}=2,652$, respectively; Annex 6).

Figure 30: Breakdown of products by combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, all products combined (among the 31 food categories currently monitored by OQALI).

3.4.2.2 By product category

The numbers and frequency of presence of combinations found in the products by category are available in Excel format on the OQALI website "Review in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrences with group_categ".

The number of combinations and the combinations of classes of sweetening ingredients or ingredients conveying sweetness varied depending on the category. For example, the Margarines category contained only two combinations of sweetening ingredients or ingredients conveying sweetness, while all 17 combinations studied were found in the Fresh delicatessen products category.

The Sucrose class used alone was the most common combination in 17 of the 31 categories. As observed for all products combined, the Sucrose class was also used in combination with one or more other classes (mainly the Syrups and Fruit juices and concentrates classes).

In seven categories, the most frequently used combination was Other combinations (64\% of products for Cereal bars, 33% for Confectionery, 31% for Ice creams and sorbets, 30% for Delicatessen meats, 21% for Frozen snacking products, 18% for Fresh delicatessen products and 15% for Ready-to-eat frozen meals). In the Cereal bars, Ice creams and sorbets and Confectionery categories, two of the four most commonly used combinations combined three and/or four classes of sweetening ingredients.

Among the two categories containing the lowest proportions of products with a sweetening ingredient or ingredient conveying sweetness, Cheeses used the Lactose class alone, as expected (2% of products), as well as the Other combinations group (2% of products), while the Sucrose class alone was found in only 1% of products (such as flavoured processed cheese, processed cheese specialities that may be accompanied by breadsticks, and aperitif cheese bites with fillings or inclusions). In the Margarines category, products with sweetening ingredients or ingredients conveying sweetness used either the Fruit juices and concentrates class alone (10\% of products) or the Lactose class alone (3\% of products).

3.4.2.3 By type of brand

Not including the specialised retailer brands, the other four types of brands used broadly the same class combinations (Figure 31). The use of Sucrose alone was therefore the most common combination (from 17% of entry-level retailer brand products to 22% of retailer brand products).

Study of sweetening ingredients or ingredients conveying sweethess - DQAII, -2024 Edition
Figure 31: Breakdown of products by combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, by type of brand (among the 31 food categories currently monitored by OQALI).

As with all products combined, the "Other combinations" group was found in 11\% (retailer brands) to 14% of products (national brands and entry-level retailer brands). For all the types of brands therefore (apart from specialised retailer brands), there was a great diversity of combinations found in a small number of products. National brands and retailer brands used the Fruit juices and concentrates/Sucrose combination (in 8\% of products in these two types of brands), while this combination was used less by "budget price" brands (4% of hard discount products and 3\% of retailer brands), which preferred the Syrups/Sucrose combination (9% and 8%, respectively).

Specialised retailer brands stood out with the "Other combinations" group found in 22% of products, meaning that this type of brand contained a great diversity of combinations. The Sucrose class used alone had the second highest frequency of presence (10% of products in this type of brand), followed by the use of the Other sugars class alone (7%) and the Syrups/Sucrose combination (7\%). This reflects the more specific product offering in this type of brand (as a reminder, this type of brand focuses on frozen food categories, which explains why its use of sweetening ingredients or ingredients conveying sweetness differed from that of the other types of brands). These combinations were particularly common in the Ice creams and sorbets, Frozen pastries and desserts, Frozen snacking products and Ready-to-eat frozen meals categories.

The results by type of brand, without the grouping into "Other combinations" of frequency of presence values below 1\%, for all products combined, are available in Excel format on the OQALI website "Review in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrences with group_brand".

3.5 Frequency of presence of intense sweeteners

This section focuses on the use of intense sweeteners and supplements the previous sections by providing more detail on the intense sweeteners used. In the remainder of this section, the term "sweetened" refers only to intense sweeteners and does not include bulk sweeteners.

3.5.1 Study by intense sweetener

3.5.1.1 All products combined

As indicated in the previous sections, intense sweeteners were found in only $2 \%(n=926)$ of products (Figure 4 and Table 3). Their use is therefore generally low.

Table 3: Numbers and proportions of products containing at least one intense sweetener considered in sweetened products and in all products (among the 31 food categories currently monitored by OQALI; sorted in descending order of the proportion of sweetened products).

Intense sweetener	Number of products containing at least the intense sweetener studied*	Proportion in relation to products containing at least one intense sweetener (n=926)	Proportion in relation to all products taken into account in the study (n=39 $101)$
Acesulfame K	636	69%	$1,6 \%$
Sucralose	506	55%	$1,3 \%$
Aspartame	290	31%	$0,7 \%$
Steviol glycosides	159	17%	$0,4 \%$
Cyclamates	47	5%	$0,1 \%$
Saccharins	29	3%	$0,1 \%$
Neohesperidin DC	10	1%	$0,03 \%$
Salt of aspartame-acesulfame	3	$0,3 \%$	$0,01 \%$
Neotame	1	$0,1 \%$	$0,003 \%$
Advantame	0	0%	0%
Thaumatin	0	0%	0%
the same product may contain several intense sweeteners			

Among the 11 intense sweeteners authorised on the European market, nine were found in the products studied (proportions ranging from 0.003% to 1.6%) but only four were used in more than 10% of sweetened products. Thus, acesulfame \mathbf{K} and sucralose were found in more than half of sweetened products (69% and 55% of sweetened products, respectively). Aspartame was found in 31% of sweetened products and steviol glycosides in 17% of sweetened products. The Spanish study (Beltra et al. 2022) found similar results: the most commonly used intense sweeteners were sucralose and acesulfame K (found in 52.4% and 48.2% of sweetened products, respectively), followed by steviol glycosides (20.9\%) and aspartame (16.4\%). As a reminder, there are differences between the Spanish and French data regarding the way the products were collected.

On the other hand, advantame and thaumatin were not found in any of the products studied.

3.5.1.2 By relevant product category

As stated in Section 3.3.2.9, the use of intense sweeteners was concentrated in four categories: Soft drinks, Confectionery, Fresh dairy products and desserts and Syrups, which will be referred to below as the "relevant categories".

Acesulfame K was the most commonly used intense sweetener in each of the four relevant categories (ranging from 4% of the products studied for Fresh dairy products and desserts to 14% for Confectionery; Figure 32).

Figure 32: Use of intense sweeteners in the four relevant food categories (Soft drinks, Confectionery, Fresh dairy products and desserts, Syrups) based on the latest available data (sorted by most commonly used intense sweetener, all products combined).

Sucralose, aspartame and steviol glycosides were found in these four categories, but their frequency of presence varied according to the category. Thus, sucralose was found in 9% ($\mathrm{n}=62$) of products in the Soft drinks, Syrups and Confectionery categories, but in only 2% of products in the Fresh dairy products and desserts category, while steviol glycosides were present in 4% ($n=99$) of products in the Soft drinks category, compared with $0.2 \%(n=7)$ in the Fresh dairy products and desserts category. Aspartame was found in 11% ($n=135$) of products in the Confectionery category and in only $1 \%(\mathrm{n}=41)$ of those in the Fresh dairy products and desserts category.

Lastly, some intense sweeteners were only used in a very small number of products and in just one category: saccharins were only found in $1 \%(n=15)$ of products in the Soft drinks category, salt of aspartame-acesulfame in $0.2 \%(n=3)$ of products in the Confectionery category, and neotame in $0.03 \%(\mathrm{n}=1)$ of products in the Fresh dairy products and desserts category.

These differences between intense sweeteners cannot be explained by regulation. Indeed, all the intense sweeteners are authorised in these four categories, although certain sub-categories have a few regulatory exceptions (for example, cyclamates are not authorised in the Chewing gum regulatory sub-category) (European Parliament and Council 2008b).

The numbers and proportions of products containing at least one of the intense sweeteners considered, in both sweetened products and for all products, by relevant product category, are presented in Annex 7.

3.5.1.3 By type of brand

Not including the specialised retailer brands, the other four types of brands generally used the same intense sweeteners, but with different frequency of presence values (Figure 33). Thus, six of the nine intense sweeteners used were found in all four types of brands. The most common were acesulfame K , sucralose and aspartame. The frequency of presence of these three sweeteners was lower for retailer brands and, to a lesser extent, hard discount brands than for the other types of brands. Note that for entry-level retailer brands, saccharins and cyclamates were found in a slightly higher proportion of products $(1 \%$, i.e. $n=11$ and $n=10$, respectively) than for the other types of brands (less than 0.5%).

Figure 33: Use of intense sweeteners by type of brand, based on the latest data available (among the 31 food categories currently monitored by OQALI; sorted by most commonly used intense sweetener, all products combined).

In addition, three other rarely-used intense sweeteners were each found in a single type of brand: neohesperidin DC and salt of aspartame-acesulfame in $0.1 \%(n=10)$ and $0.02 \%(n=3)$ of national brands, respectively, and neotame in $0.01 \%(n=1)$ of retailer brands.

Specialised retailer brands had no products in the four relevant product categories in which the intense sweeteners were most commonly found. Their use of intense sweeteners therefore differed from that in the other four types of brands: only three intense sweeteners were used in the four sweetened products in this type of brand, all belonging to the Ice creams and sorbets category: steviol glycosides (0.1%; $n=3$), acesulfame $K(0.05 \% ; n=1$) and aspartame (0.05%; $\mathrm{n}=1$).

The numbers and proportions of products containing at least one of the intense sweeteners considered, in both sweetened products and for all products, by type of brand, are presented in Annex 8.

3.5.2 Study of combinations of intense sweeteners

3.5.2.1 All products combined

Acesulfame K and aspartame, which were the intense sweeteners most commonly found in sweetened products, tended to be used in combination: the acesulfame K/aspartame combination was used in 21% ($n=190$; Figure 34) of sweetened products. Sucralose was used both alone (13% of products with at least one intense sweetener) and in combination with other intense sweeteners (mainly the acesulfame $\mathrm{K} /$ sucralose combination found in 32% of products with at least one intense sweetener and the acesulfame K/aspartame/sucralose combination found in 7%). Steviol glycosides tended to be used on their own (15% of products).

Figure 34: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, all products combined (among the $\mathbf{3 1}$ food categories currently monitored by OQALI).

The acesulfame K/aspartame/cyclamates/saccharins combination, which includes four different intense sweeteners, was present in only $1 \%(\mathrm{n}=9)$ of products with at least one intense sweetener.

The numbers and proportions of products by combination of intense sweeteners, in both sweetened products and for all products (among the 31 product categories currently monitored by OQALI) and without grouping together the least used combinations, are presented in Annex 9.

3.5.2.2 By relevant product category

The combinations found were fairly similar for Soft drinks and Fresh dairy products and desserts, but differed for Confectionery and Syrups (Figure 35).

The acesulfame K/sucralose combination was the most commonly used in three of the four relevant categories (Fresh dairy products and desserts with 52% ($n=64$) of sweetened products in this category; Syrups with $44 \%(n=32)$; Soft drinks with $39 \%(n=159)$). In addition, in the Fresh dairy products and desserts category, the acesulfame K/aspartame combination was frequently found (30% ($\mathrm{n}=37$) of its sweetened products). The Soft drinks category, where the acesulfame $\mathrm{K} /$ sucralose combination was the most common, also included the use of steviol glycosides alone (24% ($\mathrm{n}=97$) of its sweetened products) and the acesulfame K/aspartame combination (17\%; $n=71$). The Syrups category also used sucralose/steviol glycosides (14\%; $\mathrm{n}=10$) in its sweetened products, acesulfame $\mathrm{K} / \operatorname{aspartame/sucralose}$ (11\%; $\mathrm{n}=8$) and acesulfame $\mathrm{K} /$ cyclamates (11%; $\mathrm{n}=8$).

In the Confectionery category, acesulfame K/aspartame (31\%; $n=74$) and sucralose alone (15\%; $\mathrm{n}=37$) or combined with other intense sweeteners (acesulfame K/aspartame/sucralose found in 22% ($\mathrm{n}=52$) of sweetened products in this category; acesulfame $\mathrm{K} /$ sucralose in 11% ($\mathrm{n}=26$)) were the combinations mainly used.

The numbers and proportions of products by combination of intense sweeteners, in both sweetened products and for all products, for the four relevant product categories and without grouping together the least used combinations, are presented in Annex 10.

Soft drinks

Fresh dairy products and desserts

Syrups

[^6]
3.5.2.3 By type of brand

Not including the specialised retailer brands, the most commonly used combinations were generally the same for all the types of brands, but their frequency of use depended on the type of brand (Figure 36). These uses reflected the range of products in each type of brand.

${ }^{1}$ Combinations with frequency of presence values below 1% were grouped together in "Other combinations of intense sweeteners"
Study of sweetening ingredients or ingredients conveving sweetness - OQALI - 2024 Edition

Figure 36: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, by type of brand (among the 31 food categories currently monitored by OQALI)

The acesulfame $\mathrm{K} /$ sucralose combination was the most commonly used in three types of brands (entry-level retailer brands with 47% of sweetened products in the type of brand, i.e. $\mathrm{n}=22$; retailer brands with 39%, i.e. $\mathrm{n}=92$; national brands with 30%, i.e. $\mathrm{n}=162$). National brands also often used the acesulfame k/aspartame combination (23% of their sweetened products; $n=121$), steviol glycosides alone ($17 \% ; n=92$) or sucralose alone (9%; $n=50$). These uses can be explained by the composition of the offering in the national brands, which includes a high proportion of Soft drinks, Fresh dairy products and desserts and, to a lesser extent, Confectionery. Retailer brands also often used sucralose alone (20\%; n=26), steviol glycosides alone (12%; $\mathrm{n}=28$) and the acesulfame $\mathrm{K} /$ aspartame combination (11%; $\mathrm{n}=26$). These uses reflected those observed in particular in the relevant categories Soft drinks and Confectionery, which are often found among retailer brands. Entry-level retailer brands mainly used two other combinations: acesulfame K/aspartame (19\%; n=9) and cyclamates/saccharins (11\%; $\mathrm{n}=5$). These uses were partly comparable to those in the Soft drinks category (note the low use of steviol glycosides in this type of brand) and in the Fruit juices and nectars category (the cyclamate/saccharin combination was found in nectars), which are frequently found among entry-level retailer brands.

Hard discount products mainly used acesulfame $\mathrm{K} /$ aspartame (30\%; $\mathrm{n}=33$) and acesulfame $\mathrm{K} /$ sucralose (18%; $\mathrm{n}=20$) combinations, as well as sucralose alone ($16 \% ; \mathrm{n}=17$) and steviol glycosides alone (10%; $n=11$). These uses reflect those observed in particular in the relevant categories Confectionery and Syrups, which are frequently found among hard discount products.

As mentioned in the previous sections, because their product offering focuses on a few frozen food categories, specialised retailer brands had no products for the four relevant categories. Furthermore, there are very few sweetened products in this type of brand and all belong to the Ice creams and sorbets category, which explains the large difference observed with the other types of brands.

The numbers and proportions of products by combination of intense sweeteners, in both sweetened products and for all products, for the types of brands and without grouping together the least used combinations, are presented in Annex 11.

3.6 Conclusion on the use of sweetening ingredients or ingredients conveying sweetness, based on the most recent data

Among the 39,101 products studied, three quarters (77\%) used at least one sweetening ingredient or ingredient conveying sweetness, as defined by OQALI. This result was similar by type of brand, with 76% of national brands and 81% of specialised retailer brands ${ }^{10}$ containing at least one sweetening ingredient or ingredient conveying sweetness. In most product categories (27 out of the 31 studied), the majority of the offerings had at least one sweetening ingredient or ingredient conveying sweetness. Ten of these categories had a more savoury connotation (Cold sauces: 94\%, Frozen snacking products: 87\%, Delicatessen meats: 84%, Hot sauces: 81%, Fresh delicatessen products: 77%, Ready-to-eat fresh meals: 71%, Soups and broths: 59%, Ready-to-eat frozen meals: 59%, Ready-to-eat canned meals: 54%, Crackers: 53%).

Among the 11 classes of sweetening ingredients or ingredients conveying sweetness, five were found in at least 10% of products:

- Sucrose was the predominant class, since it was found in more than half of the products studied, whether for all products combined (58%; $\mathrm{n}=22,710$) or by type of brand (from 55\% for entry-level retailer brands to 62% for specialised retailer brands ${ }^{10}$). In a majority of product categories (19 out of the 31 studied), more than half of the offerings contained at least one ingredient from this class. Most of these categories had a sweet connotation, but four were more savoury (Cold sauces, Hot sauces, Frozen snacking products and Fresh delicatessen products);
- Syrups ($\mathrm{n}=9,396 ; 24 \%$): in five product categories, more than half of the offerings had an ingredient from this class. These were categories with a sweet connotation (Cereal bars: 99\%; Ice creams and sorbets: 95\%; Confectionery: 76\%; Cakes and biscuits: 55\%; Frozen pastries and desserts: 54%). These ingredients were found in all the types of brands, with frequencies ranging from 22% for national brands and retailer brands to 28% for entry-level retailer brands, and even 43% for specialised retailer brands;
- Fruit juices and concentrates ($\mathrm{n}=7,834 ; 20 \%$): in five product categories, more than 30% of the offerings had an ingredient from this class (Fruit juices and nectars ${ }^{11}$: 90\%; Syrups: 76%; Soft drinks: 54%; Jams: 38%). Their use varied from 15% for entry-level retailer brands and hard discount products to 24% for specialised retailer brands ${ }^{10}$;
- Other sugars ($\mathrm{n}=6,407 ; 16 \%$): in six product categories, more than 30% of the offerings had an ingredient in this class, most often dextrose (Cereal bars: 65\%; Delicatessen meats: 65\%; Frozen snacking products: 50\%; Fresh delicatessen products: 40\%; Ready-

[^7]to-eat fresh meals: 36%; Processed potato products: 35%). Their use varied from 13% for national brands to 31% for specialised retailer brands ${ }^{12}$;

- Lactose ${ }^{13}$ ($\mathrm{n}=4,488$; 11\%): in three product categories, at least 30% of the offerings had an ingredient from this class (Infant milks: 83%; Ice creams and sorbets: 61% and Delicatessen meats: 30%). Its use varied from 8% for national brands to 22% for specialised retailer brands ${ }^{12}$.

The vast majority of products studied used one class (34\% of the products studied) or a combination of two different classes of sweetening ingredients or ingredients conveying sweetness (25% of products). A few products used up to seven different classes simultaneously (0.05% of all products belonging to the Frozen pastries and desserts, Cereal bars, Ice creams and sorbets, Chocolate products, Cakes and biscuits and Frozen snacking products categories; products in assortments with a common ingredient list for all the items in the assortment or elaborate recipes mixing several elements such as fillings, sauces and/or inclusions for example). This result was similar by type of brand and for almost all the product categories studied, with the exception of Cereal bars and Ice creams and sorbets, which had high proportions of products using three or more classes simultaneously (93% of Cereal bars and 86% of Ice creams and sorbets). The Sucrose class used alone was the most frequently found in all products combined (20\%) and by type of brand (from 10% of products from specialised retailer brands to 22% of retailer brands). This class was also frequently used in combination: the combinations Fruit juices and concentrates/Sucrose and Syrups/Sucrose were the most common after the Sucrose class used alone (7% of products for each combination, all products combined).

Use of intense sweeteners was generally low (2% of products studied) and was concentrated in four product categories: Confectionery (19\%), Soft drinks (17\%), Syrups (11\%) and Fresh dairy products and desserts (4\%). These uses depended on the category and type of brand. Overall, only four intense sweeteners were used in more than 10% of artificially sweetened products: acesulfame K (69% of artificially sweetened products), sucralose (55\%), aspartame (31%) and steviol glycosides (17\%). They were used alone and/or in combination: acesulfame $\mathrm{K} /$ sucralose and acesulfame $\mathrm{K} /$ aspartame combinations were the most commonly found (in 32% and 21% of artificially sweetened products, respectively), followed by steviol glycosides alone (15%) and sucralose alone (13%).

[^8]
4. CHANGES IN THE FREQUENCY OF PRESENCE OF SWEETENING INGREDIENTS OR INGREDIENTS CONVEYING SWEETNESS IN 27 OF THE 31 PRODUCT CATEGORIES CURRENTLY MONITORED BY OQALI

4.1 Presentation of the data used

This section focuses on the 27 product categories for which at least two collection campaigns were carried out, among the 31 currently studied by OQALI. Each of them was therefore the subject of an initial characterisation, described as "baseline", as well as a study to monitor changes a few years later, described below as "follow-up". It should be noted that 10 product categories have already been monitored on three occasions (Cakes and biscuits, Soft drinks, Breakfast cereals, Fruit purées, compotes and desserts, Jams, Canned fruits, Bread products, Ready-to-eat canned meals, Ready-to-eat frozen meals and Fresh dairy products and desserts). For these categories, the study considered the data separated by the longest intervals, i.e. the oldest and most recent available.

Note that the Frozen snacking products category includes frozen pizzas. For these products, earlier data from 2010 were available ($\mathrm{n}=214$) and were therefore used instead of 2015 data. However, the year indicated as the baseline was the most recent for this category, as it did not take into account the earlier date for frozen pizzas.

The 27 product categories studied in the remainder of this report are Crackers, Cereal bars, Cakes and biscuits, Soft drinks, Soups and broths, Breakfast cereals, Delicatessen meats, Chocolate products, Fruit purées, compotes and desserts, Jams, Canned fruits, Ice creams and sorbets, Fruit juices and nectars, Margarines, Bread products, Ready-to-eat canned meals, Ready-to-eat fresh meals, Ready-to-eat frozen meals, Dessert mixes, Fresh dairy products and desserts, Fresh delicatessen products, Processed potato products, Hot sauces, Cold sauces, Syrups, Frozen snacking products and Frozen pastries and desserts.

Thus, the remainder of this report covers a total of 54,460 products, broken down into 19,723 products for the baseline and 34,737 for the follow-up and classified into 27 product categories (Table 4). Note that among the categories studied, 15 had a mainly sweet connotation and 12 were more savoury. The numbers of products increased between baseline and follow-up, due to a better coverage rate and the growing diversification of the offering.

Table 4: List of the 27 OQALI product categories included in the change study (among the 31 food categories currently monitored by OQALI) and numbers of associated products.

Product category	Year(s) of data collection		Number of products taken into account in the change study		Estimated coverage*	
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up
Crackers	2009	2013	551	1082	53\%	59\%
Cereal bars	2010-2011	2016	169	181	79\%	82\%
Cakes and biscuits	2008	2018	1723	3120	66\%	76\%
Soft drinks	2009-2010	2019	891	2343	76\%	82\%
Soups and broths	2011	2017	569	788	74\%	66\%
Breakfast cereals	2008	2018	332	659	80\%	87\%
Delicatessen meats	2010	2013	1161	1722	65\%	64\%
Chocolate products	2009	2012	731	1013	68\%	74\%
Fruit purées, compotes and desserts	2009	2017	480	972	72\%	90\%
Jams	2009	2017	337	781	58\%	81\%
Canned fruits	2009	2017	181	245	49\%	76\%
Ice-creams and sorbets	2010-2011	2015	1416	1953	67\%	87\%
Fruit juices and nectars	2009-2010	2013	816	1637	56\%	83\%
Margarines	2011	2016	95	109	82\%	86\%
Bread products	2009	2019	584	1740	55\%	86\%
Ready-to-eat canned meals	2010	2020	794	2672	43\%	67\%
Ready-to-eat fresh meals ${ }^{1}$	2009-2010	2016	779	1416	28\%	36\%
Ready-to-eat frozen meals	2012	2020	1861	2108	59\%	76\%
Dessert mixes	2009	2013-2014	160	329	61\%	76\%
Fresh dairy products and desserts	2008-2009	2017	1613	3115	67\%	87\%
Fresh delicatessen products	2009-2010	2015	1141	2293	42\%	58\%
Processed potato products	2011	2017	683	791	76\%	85\%
Hot sauces	2010	2017	295	609	75\%	78\%
Cold sauces	2011	2016	544	623	78\%	80\%
Syrups	2010	2019	316	681	69\%	90\%
Frozen snacking products ${ }^{2}$	$2015{ }^{2}$	2018	930^{2}	1147	80\% ${ }^{2}$	80\%
Frozen pastries and desserts	2015	2018	571	608	72\%	75\%
All categories	2008-2015	2012-2020	19723	34737	65\% ${ }^{3}$	$77 \%{ }^{3}$

*Ratio of product volumes identified by OQALI to the total market volume characterised by Kantar Worldpanel
${ }^{1}$ For the Ready-to-eat fresh meals category, as 2020 data were not available at the time of processing sweetening ingredients or ingredients conveying sweetness, the most recent data at that time were used, i.e. data from 2016
approximation as it does not take into account the change made for frozen pizzas.
Depending on the category, the product collection years ranged from 2008 to 2015 for the baseline and from 2012 to 2020 for the follow-up. This means that the dates on which data were collected may overlap for some categories and the intervals between two monitoring periods may differ, which is a limitation that should be taken into account when interpreting the results presented by category.

Coverage rates ${ }^{14}$ for products collected by OQALI differed depending on the categories and collection periods (data from Kantar Worldpanel ${ }^{15}$). Overall, they increased between baseline and follow-up (except for Soups and broths and Delicatessen meats). This reflects improved representativeness of the products collected by OQALI at follow-up and should also be taken into account when interpreting the results. However, the coverage rates presented are underestimated due to the fact that some products found on the market could not be assigned precisely to a line in the database communicated by Kantar Worldpanel and that, conversely, some products in the Kantar Worldpanel database were not found among the products collected by OQALI.

A table detailing the numbers and proportions of products by category and type of brand is provided in Annex 12.

[^9]As in the previous part, some products were not considered in this change study. This concerned products:

- from out-of-home catering, central purchasing agencies and pharmacies, as these could not be collected for all categories;
- for which ingredient lists were unavailable, except for cheeses, as the regulations do not require them to provide a list of ingredients on the packaging (European Parliament and Council 2011) ${ }^{16}$.

It should also be remembered that the results in this section may differ from those of studies already published by OQALI. Indeed, when making corrections to the OQALI database, the scope of the studies or any information studied in the OQALI reports may have been modified or corrected. This study was carried out using corrected updated data.

[^10]
4.2 Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness

This section details the study of the changes in frequency of presence of all the classes of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists of the products considered, based on the 27 product categories for which at least two collection campaigns were carried out, among the 31 categories currently studied by OQALI.

4.2.1 All products combined

Among all the products studied, the proportion of those containing at least one sweetening ingredient or ingredient conveying sweetness fell significantly, by 5.5 points, from 86.5% ($\mathrm{n}=17,068$) to $81 \%(\mathrm{n}=28,163$) (Figure 37).

Change in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness, all products combined (among the 27 product categories monitored for changes)

Figure 37: Change in the breakdown of products with and without sweetening ingredients or ingredients conveying sweetness, all products combined (among the $\mathbf{2 7}$ food categories monitored for changes).

Note that it is not possible to compare the proportions of products with at least one sweetening ingredient or ingredient conveying sweetness at follow-up with those observed in the previous part (Section 3.2. Frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness). This is because four product categories that were taken into account in the previous part are not included here, in particular Baby food and Cheeses, where the proportions of products containing at least one sweetening ingredient or ingredient conveying sweetness were among the lowest ${ }^{17}$ (Figure 2), explaining the lower percentage observed in the previous part.

4.2.2 By product category

The significant 5.5 point reduction in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness, observed in all products combined, was driven by almost half of the product categories studied. Sixteen of the changes were significant: 13 involved a decrease and three an increase (Table 5).

[^11]Table 5: Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness, all products combined and by food category (27 categories monitored for changes; sorted in descending order of the proportion of products with a sweetening ingredient or ingredient conveying sweetness at baseline).

Product category ($n=$ number of products containing at least one sweetening ingredient or ingredient conveying sweetness, all products combined or by product category)	Change in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
All products combined (Baseline: $\mathbf{n = 1 7 0 6 8}$; Follow-up: $\mathbf{n}=\mathbf{2 8 1 6 3}$)	86,5\%	81\%	-5.5***
Cereal bars (Baseline: n=169; Follow-up: n=181)	100\%	100\%	+0
Jams (Baseline: n=337; Follow-up: n=781)	100\%	100\%	+0
Canned fruits (Baseline: $\mathrm{n}=181$; Follow-up: $\mathrm{n}=245$)	100\%	100\%	+0
Ice-creams and sorbets (Baseline: n=1416; Follow-up: n=1953)	100\%	100\%	+0
Cakes and biscuits (Baseline: n=1723; Follow-up: n=3117)	100\%	99,9\%	-0.1
Frozen pastries and desserts (Baseline: n=568; Follow-up: n=605)	99\%	99,5\%	+0.03
Chocolate products (Baseline: n=726; Follow-up: n=1005)	99\%	99\%	-0.1
Syrups (Baseline: n=312; Follow-up: n=675)	99\%	99\%	+0.4
Breakfast cereals (Baseline: n=326; Follow-up: n=599)	98\%	91\%	-7.3***
Fruit juices and nectars (Baseline: n=794; Follow-up: n=1557)	97\%	95\%	-2.2*
Soft drinks (Baseline: $\mathrm{n}=861$; Follow-up: $\mathrm{n}=2132$)	97\%	91\%	-5.6***
Dessert mixes (Baseline: n=154; Follow-up: n=286)	96\%	87\%	-9.3**
Hot sauces (Baseline: n=276; Follow-up: n=495)	94\%	81\%	-12.3***
Bread products (Baseline: n=540; Follow-up: n=1315)	92\%	76\%	-16.9***
Fresh delicatessen products (Baseline: $\mathrm{n}=1050$; Follow-up: n=1764)	92\%	77\%	-15.1***
Delicatessen meats (Baseline: n=1039; Follow-up: n=1443)	89\%	84\%	-5.7***
Fresh dairy products and desserts (Baseline: n=1431; Follow-up: n=2626)	89\%	84\%	-4.4***
Cold sauces (Baseline: $\mathrm{n}=482$; Follow-up: n=585)	89\%	94\%	+5.3**
Frozen snacking products (Baseline: n=817; Follow-up: n=1000)	88\%	87\%	-0.7
Ready-to-eat fresh meals (Baseline: n=605; Follow-up: n=1010)	78\%	71\%	-6.3**
Ready-to-eat canned meals (Baseline: n=615; Follow-up: n=1432)	77\%	54\%	-23.9***
Fruit purées, compotes and desserts (Baseline: n=345; Follow-up: n=676)	72\%	70\%	-2.3
Ready-to-eat frozen meals (Baseline: n=1333; Follow-up: n=1240)	72\%	59\%	$-12.8{ }^{* * *}$
Soups and broths (Baseline: $\mathrm{n}=368$; Follow-up: n=465)	65\%	59\%	-5.7*
Crackers (Baseline: n=305; Follow-up: n=572)	55\%	53\%	-2.5
Processed potato products (Baseline: n=292; Follow-up: n=390)	43\%	49\%	+6.6*
Margarines (Baseline: n=3; Follow-up: $\mathrm{n}=14$)	3\%	13\%	+9.7*

Purple cells: significant decrease in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness as defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if $p<0.05$; ${ }^{* *}$ if $p<0.01$; ${ }^{* * *}$ if p <0.001)
Orange cells: significant increase in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness as defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if p <0.05; ${ }^{* *}$ if p <0.01; ${ }^{* * *}$ if p <0.001)
Statistical test performed: chi-square test

The 13 categories that saw a significant reduction in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness were: Ready-to-eat canned meals (-23.9 points), Bread products (-16.9 points), Fresh delicatessen products (-15.1 points), Ready-to-eat frozen meals (-12.8 points), Hot sauces (-12.3 points), Dessert mixes (-9.3 points), Breakfast cereals (-7.3 points), Ready-to-eat fresh meals (-6.3 points), Delicatessen meats (-5.7 points), Soups and broths (-5.7 points), Soft drinks (-5.6 points), Fresh dairy products and desserts (-4.4 points) and Fruit juices and nectars (-2.2 points). Note that the majority of these categories (8 out of the 13 mentioned) had a more savoury connotation, and that five of them saw large reductions in products using a sweetening ingredient or ingredient conveying sweetness (significant decreases of more than 10 points).

Moreover, the eight categories with the highest proportions of products at baseline still had a very high proportion at follow-up. This is because these eight categories all had a sweet connotation (Cereal bars, Jams, Canned fruits, Ice creams and sorbets, Cakes and biscuits, Frozen pastries and desserts, Chocolate products and Syrups).

Conversely, three product categories saw a significant increase in the proportion of their products containing at least one sweetening ingredient or ingredient conveying sweetness. These were Margarines (+9.7 points), Processed potato products (+6.6 points) and Cold sauces (+5.3 points) categories. Note that Margarines and Processed potato products were the categories with the lowest proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness at both baseline and follow-up (3\% and 13\%, respectively, for Margarines; 43% and 49% for Processed potato products).

4.2.3 By type of brand

The significant reduction observed in all products combined (-5.5 points) was driven by all the types of brands (Table 6). Indeed, the proportion of products with at least one sweetening ingredient or ingredient conveying sweetness fell significantly for all the types of brands, with large changes seen in certain types of brands, such as national brands (significant reduction of 6.4 points).

Table 6: Change in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness, all products combined and by type of brand (27 food categories monitored for changes; sorted in descending order of the proportion of products with sweetening ingredients or ingredients conveying sweetness at baseline).

Type of brand ($n=n u m b e r$ of products containing at least one sweetening ingredient or ingredient conveying sweetness, all products combined or by type of brand)	Change in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
All products combined (Baseline: $\mathbf{n = 1 7 0 6 8}$; Follow-up: $\mathbf{n}=28163$)	86,5\%	81\%	-5.5***
Hard discount (Baseline: n=2774; Follow-up: n=3670)	88\%	84\%	$-3.7^{* * *}$
Entry-level retailer brands (Baseline: n=973; Follow-up: n=931)	87\%	83\%	-4.0**
Retailer brands (Baseline: n=7361; Follow-up: n=12307)	87\%	82\%	-4.9 ***
National brands (Baseline: n=4383; Follow-up: n=9189)	86\%	80\%	$-6.4 * * *$
Specialised retailer brands ${ }^{1}$ (Baseline: n=1577; Follow-up: n=1776)	85\%	81\%	-3.9 ***

Purple cells: significant decrease in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness as defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if $\mathrm{p}<0.05$; ** if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Orange cells: significant increase in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness as defined by OQALI in the products between baseline and follow-up (* if p<0.05; ** if p<0.01; *** if p<0.001)
Statistical test performed: chi-square test
${ }^{1}$ As specialised retailer brands were present in only six product categories out of the 27 studied (5 categories for which baseline and follow-up data were available: Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difficult to compare them to the other types of brands.

4.3 Change in frequency of presence by class of sweetening ingredients or ingredients conveying sweetness

This part describes the changes in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists of the products considered, by considering the 27 product categories monitored for changes. As a reminder, because the same product may contain several different classes of sweetening ingredients or ingredients conveying sweetness, it is not possible to add the proportions together.

4.3.1 All products combined

There was a significant decline in the frequency of use of almost all classes of sweetening ingredients or ingredients conveying sweetness, with the exception of the Fruit juices and concentrates class, which increased significantly, and the Honey class, which remained stable and is rarely used (Table 7).

Table 7: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products containing each of the classes considered, at baseline).

Class of sweetening ingredients or ingredients conveying sweetness	Change in the proportion of products, all classes combined or by class of sweetening ingredients or ingredients conveying sweetness (27 product categories monitored for changes)		
sweetness considered)	Baseline	Follow-up	Change in the proportions (point)
All classes of sweetening ingredients or ingredients conveying sweetness combined (Baseline: $\mathbf{n}=17068$; Follow-up: $\mathbf{n}=\mathbf{2 8 1 6 3}$)	86,5\%	81\%	-5.5***
Sucrose (Baseline: $\mathrm{n}=12552$; Follow-up: $\mathrm{n}=21444$)	64\%	62\%	-1.9***
Syrups (Baseline: $\mathrm{n}=6354$; Follow-up: $\mathrm{n}=8431$)	32\%	24\%	-7.9***
Other sugars (Baseline: n=5047; Follow-up: n=6172)	26\%	18\%	-7.8***
Lactose (Baseline: $\mathrm{n}=3906$; Follow-up: $\mathrm{n}=4240$)	20\%	12\%	-7.6***
Fruit juices and concentrates (Baseline: n=3703; Follow-up: n=7368)	19\%	21\%	+2.4***
Caramel (Baseline: n=1429; Follow-up: n=1804)	7\%	5\%	-2.1***
Other ingredients conveying sugars (Baseline: $\mathrm{n}=851$; Follow-up: $\mathrm{n}=1135$)	4\%	3\%	-1.0***
Bulk sweeteners (Baseline: $\mathrm{n}=590$; Follow-up: $\mathrm{n}=845$)	3\%	2\%	-0.6***
Intense sweeteners (Baseline: $\mathrm{n}=490$; Follow-up: $\mathrm{n}=687$)	2,5\%	2\%	-0.5***
Honey (Baseline: $\mathrm{n}=380$; Follow-up: $\mathrm{n}=672$)	2\%	2\%	+0.01
Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness (Baseline: $\mathrm{n}=66$; Follow-up: $\mathrm{n}=80$)	0,3\%	0,2\%	-0.1*

urple cells: significant decrease in the frequency of presence of at least one sweetening ingredient or ingr
Orange cells: significant increase in the frequency of presence of at least one sweetening ingredient or ingre
defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if $\mathrm{p}<0.05$; ** if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Statistical test performed: chi-square test

Large reductions can be seen among the nine classes whose use fell significantly, particularly in the Syrups, Other sugars and Lactose classes (-7.9 points, -7.8 points and -7.6 points, respectively). These were followed by the Caramel class, down 2.1 points, and the Sucrose class (the one most commonly used in products at both baseline and follow-up), which saw a 1.9 point reduction (although this class was still found in 62% of products at follow-up). Other less commonly used classes - Other ingredients conveying sugars, Bulk sweeteners, Intense sweeteners and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness - also decreased significantly (-1.0 point, -0.6 point, -0.5 point and -0.1 point respectively).

Fruit juices and concentrates was the only class whose frequency of presence in products increased significantly (+2.4 points).

All of these changes indicate a shift in the most commonly used classes: while Sucrose and Syrups remain the most common, they are now followed by Fruit juices and concentrates, the fifth most commonly used class at baseline, which relegated the Other sugars and Lactose classes by one place between baseline and follow-up.

4.3.2 By product category

All categories except Cold sauces and Margarines (i.e. 25 out of the 27 monitored for changes) saw at least one significant reduction in the use of a class of sweetening ingredients or ingredients conveying sweetness. There were some upward changes, but these only represented a small proportion.

By class, the significant changes observed for all products combined can therefore be explained by changes driven by several product categories for all the classes, with the exception of Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness, where none of the categories saw significant changes (Table 8).

Table 8: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness and by food category (27 categories monitored for changes)

Product category ($n=$ total number of products considered in the study, all product categories combined or by product category)	Change in the proportion of products, all classes combined or by class of sweetening ingredients or ingredients conveying sweetness (27 product categories monitored for changes)											
	All classes combined	Sucrose	Syrups	Other sugars ${ }^{1}$	Lactose	$\begin{array}{\|l} \text { Fruit juices } \\ \text { and } \\ \text { concentrates } \end{array}$	Caramel		Bulk sweeteners	Intense sweeteners	Honey	Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness
All product categories combined (Baseline: $\mathbf{n = 1 9 7 2 3}$; Follow-up: $\mathbf{n = 3 4 7 3 7}$)	-5.5***	-1.9***	-7.9***	-7.8***	-7.6***	+2.4***	-2.1***	-1.0***	-0.6***	-0.5***	+0.01	-0.1*
Crackers (Baseline: $\mathrm{n}=551$; Follow-up: $\mathrm{n}=1082$)	-2.5	+4.3	+2.0	$-6.3^{* *}$	$-7.7{ }^{* * *}$	+0.2	+0.7	-0.8	-1.1	+0.1	+0.5	-0,2
Cereal bars (Baseline: $\mathrm{n}=169$; Follow-up: $\mathrm{n}=181$)	0	+1.2	+1.9	-4.0	$-11.6 * * *$	-7.1*	-23.9***	-4.6	+10.0*	0	$-15.9 * *$	+2.2
Cakes and biscuits (Baseline: $\mathrm{n}=1723$; Follow-up: $\mathrm{n}=3120$)	-0.1	-1.4**	-1.9	-6.9***	$-8.0{ }^{* * *}$	-0.6	-1.0	-2.2 *	$-3.4{ }^{* * *}$	+0.3	+1.1	-0.2
Soft drinks (Baseline: $\mathrm{n}=891$; Follow-up: $\mathrm{n}=2343$)	$-5.6 * * *$	+7.1***	-7.7***	+0.1	-0,2	-0.2	-6.6 ***	+0.4	+0.1	-12.6***	+0.4	+0.005
Soups and broths (Baseline: $\mathrm{n}=569$; Follow-up: $\mathrm{n}=788$)	-5.7*	-2.2	-0.4	-2.5*	$-11.4 * *$	+2.5	$-2.1^{* *}$	-0.1	0	+0.3	-0.1	0
Breakfast cereals (Baseline: $\mathrm{n}=332$; Follow-up: $\mathrm{n}=659$)	-7.3***	$-8.2^{* * *}$	+1.4	-14.4***	-1.0	+1.1	$-10.1^{* * *}$	+4.0*	+0.6	+0.2	-5.1	-1,5
Delicatessen meats (Baseline: $\mathrm{n}=1161$; Follow-up: $\mathrm{n}=1722$)	-5.7 ***	-0.3	-2.9	$-6.1^{* * *}$	+0.6	-0.03	-1.2	+0.03	-0.1	0	+0.2	0
Chocolate products (Baseline: $\mathrm{n}=731$; Follow-up: $\mathrm{n}=1013$)	-0.1	-0.8	-2.0	-4.1*	-2.4	-0.1	+0.5	+5.3***	-1.0	+0.1	+0.9	-0.2
Fruit purées, compotes and desserts (Baseline: $\mathrm{n}=480$; Follow-up: $\mathrm{n}=972$)	-2.3	-4.7	$-9.9 * *$	-0,4	+0.1	+6.4**	0	+0.2	0	0	-0.2	0
Jams (Baseline: $\mathrm{n}=337$; Follow-up: $\mathrm{n}=781$)	0	$-6.3^{* * *}$	-11.9***	-10.5***	0	+2.5	-0.5	+0.5	+0.1	0	+0.4	0
Canned fruits (Baseline: $\mathrm{n}=181$; Follow-up: $\mathrm{n}=245$)	0	-6.1	$-15.2 * * *$	0	0	-1.7	0	0	0	0	0	0
Ice-creams and sorbets (Baseline: $\mathrm{n}=1416$; Follow-up: $\mathrm{n}=1953$)	0	+0.9*	+0.02	-11.8***	-2.8	+0.6	+1.7	-2.1	+0.7	-0.1	+0.4	-0.1
Fruit juices and nectars (Baseline: $\mathrm{n}=816$; Follow-up: $\mathrm{n}=1637$)	-2.2*	+2.3	$-3.6{ }^{* * *}$	-0,4	0	-2.1	0	0	0	+0.3	0	0
Margarines (Baseline: $\mathrm{n}=95$; Follow-up: $\mathrm{n}=109$)	+9.7*	0	0	0	+2.8	+6.9	0	0	0	0	0	0
Bread products (Baseline: $\mathrm{n}=584$; Follow-up: $\mathrm{n}=1740$)	-16.9***	$-12.0{ }^{* * *}$	-13.0***	$-12.9 * *$	$-5.4 * *$	+4.5***	+0.3	-1,4	-0,8	+0.1	-0.3	+0.2
Ready-to-eat canned meals (Baseline: $\mathrm{n}=794$; Follow-up: $\mathrm{n}=2672$)	-23.9***	-9.9***	-6.9 ***	-10.9***	$-10.4 * * *$	-0.6	-2.0 *	-0,5	-0.1	+0.04	+0.3	0
Ready-to-eat fresh meals (Baseline: $\mathrm{n}=779$; Follow-up: $\mathrm{n}=1416$)	-6.3**	-8.8 ***	-0.2	-2.6	$-13.2 * *$	-4.4**	-7.7***	-0.03	-0,4	+0.1	+0.3	0
Ready-to-eat frozen meals (Baseline: $\mathrm{n}=1861$; Follow-up: $\mathrm{n}=2108$)	-12.8***	$-9.2^{* * *}$	$-3.6{ }^{* * *}$	$-7.1^{* * *}$	$-11.2^{* * *}$	+1.3	$-4.4{ }^{* * *}$	-0.3	-0.1	-0.1	+0.6	0
Dessert mixes (Baseline: $\mathrm{n}=160$; Follow-up: $\mathrm{n}=329$)	-9.3 **	$-11.7^{* * *}$	-6.3	-2.3	-5.2*	+1.1	-5.4*	-0.7	-2.6	0	+0.3	-1.0
Fresh dairy products and desserts (Baseline: $\mathrm{n}=1613$; Follow-up: $\mathrm{n}=3115$)	-4.4***	+1.0	-17.4***	-4.0 ***	-6.9 ***	+6.5***	$-3.1^{* * *}$	$-4.4 * *$	+0.9*	$-4.4{ }^{* * *}$	+0.4	-0.1
Fresh delicatessen products (Baseline: $\mathrm{n}=1141$; Follow-up: $\mathrm{n}=2293$)	-15.1***	-8.9 ***	$-13.7 * * *$	$-13.2 * *$	$-12.9 * * *$	+3.9**	-2.9***	-0.3	-0.2	-0.1	-0.1	-0,4
Processed potato products (Baseline: $\mathrm{n}=683$; Follow-up: $\mathrm{n}=791$)	+6.6*	+0.1	+0.4	+5.0*	$-3.4 * *$	+0.5	-0.7	0	0	-1.4*	-0.02	0
Hot sauces (Baseline: $\mathrm{n}=295$; Follow-up: $\mathrm{n}=609$)	-12.3***	-9.0 **	+5.4*	-0.7	$-6.2^{* * *}$	+0.5	-0.7	-0.2	0	0	+0.3	0
Cold sauces (Baseline: $\mathrm{n}=544$; Follow-up: $\mathrm{n}=623$)	+5.3**	+8.7**	-2.5	+0.3	+0.5	+5.4	+0.2	0	0	+0.1	+0.4	0
Syrups (Baseline: $\mathrm{n}=316$; Follow-up: $\mathrm{n}=681$)	+0.4	+4.6	$-36.8{ }^{* * *}$	+0.3	0	-2.1	+9.4***	0	0	-0.7	0	+0.1
Frozen snacking products (Baseline: $\mathrm{n}=930$; Follow-up: $\mathrm{n}=1147$)	-0.7	+2.3	$-9.8{ }^{* * *}$	-3.8	$-8.8{ }^{* * *}$	-2.5	-0.6	-0.2	+0.1	-0.1	+0.7	0
Frozen pastries and desserts (Baseline: $\mathrm{n}=571$; Follow-up: $\mathrm{n}=608$)	+0.03	+0.4	-5.1	-1.2	-6.0 **	+6.0*	-0.5	+2.4	-2.5	+0.2	+0.9	-0.1

arple cells: significant decrease in the frequency of ppes

baseline and follow-up $\left({ }^{*}\right.$ if $p<0.05 ; *$ if $p<0.01 ; * *$ if $p<0.001$)
Statistical test performed: chi-square test

At category level, the large reductions seen in all classes combined can almost always be explained by changes in use practices relating to several classes. For example, with Ready-to-eat canned meals, which was the savoury category with the largest significant reduction in the proportion of products using at least one sweetening ingredient or ingredient conveying sweetness (-23.9 points), the change observed can be explained by significant downward changes in five of the 11 classes studied (Other sugars: -10.9 points; Lactose: -10.4 points; Sucrose: -9.9 points; Syrups: -6.9 points and Caramel: - 2.0 points). Also of note were Soft drinks, where a significant reduction was observed for all classes combined (-5.6 points). This can mainly be explained by a significant reduction in the use of intense sweeteners (-12.6 points), accompanied with significant falls for the Syrups (-7.7 points) and Caramel (-6.6 points) classes.

Conversely, in this same category, a significant increase of 7.1 points was observed for the Sucrose class. Note that this study is not saying that the nutrient content (and therefore sugar content) of the products studied has changed in the same way, but is rather characterising the use of different types of sweetening ingredients or ingredients conveying sweetness. This last result can be compared with the study of the product offering in this category, which showed that between 2010 and 2019 there was a large reduction in the proportion of artificiallysweetened products (with no added sugars), while the proportion of sugar-sweetened products remained stable and the proportion of products that were both sugar-sweetened and artificially-sweetened increased (Oqali 2023a).

For five categories (Fruit purées, compotes and desserts, Bread products, Fresh dairy products and desserts, Fresh delicatessen products and Frozen pastries and desserts), there was a significant increase in the use of the Fruit juices and concentrates class, while the use of one or more of the other classes fell significantly. The significant increases observed in the other classes were one-off and category-dependent.

There was a significant increase in the Processed potato products and Cold sauces categories for all classes combined, due to a significant increase in the use of just one class (respectively, Other sugars: +5.0 points and Sucrose: +8.7 points). Note that for the Processed potato products category, this increase was accompanied by a smaller significant reduction for two other classes (Lactose: -3.4 points; Intense sweeteners: -1.4 points).

Lastly, there was no significant change by class for the Margarines category, despite this category seeing a significant increase for all classes combined. However, there was an upward change in the use of two classes of sweetening ingredients or ingredients conveying sweetness: Fruit juices and concentrates (+6.9 points) and Lactose (+2.8 points).

The proportions of products at baseline and follow-up, as well as the changes by class of sweetening ingredients or ingredients conveying sweetness and by product category (27 product categories monitored for changes), are presented in Annex 13.

4.3.3 By type of brand

The use of classes of sweetening ingredients or ingredients conveying sweetness mostly declined for all the types of brands, with many classes decreasing significantly within the same type of brand ($\mathbf{2}$ out of $\mathbf{1 1}$ classes for entry-level retailer brands, $\mathbf{3}$ for specialised retailer brands, 6 for retailer brands and $\mathbf{7}$ for national brands and hard discount products). There were only a few significant increases: in the Fruit juices and concentrates class among national brands (+4.2 points) and specialised retailer brands (+2.7 points), and in the Honey class among specialised retailer brands (+1.6 points).

The significant changes observed for all products combined by class were therefore driven by several types of brands (except for the Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness and Intense sweeteners classes) (Table 9).

Table 9: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness and by type of brand ($\mathbf{2 7}$ food categories monitored for changes)

	Change in the proportion of products, all classes combined or by class of sweetening ingredients or ingredients conveying sweetness (27 product categories monitored for changes)											
Type of brand ($n=$ total number of products considered in the study, all products combined or by type of brand)	All classes combined	Sucrose	Syrups	Other sugars ${ }^{2}$	Lactose	Fruit juices and concentrates	Caramel	Other ingredients conveying sugars	Bulk sweeteners	Intense sweeteners	Honey	Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness
All products combined (Baseline: $\mathrm{n}=19723$; Follow-up: $\mathrm{n}=34737$)	-5.5***	-1.9***	-7.9***	-7.8***	-7.6***	+2.4***	-2.1***	-1.0***	-0.6***	-0.5***	+0.01	-0.1*
National brands (Baseline: $\mathrm{n}=5089$; Follow-up: $\mathrm{n}=11532$)	-6.4***	$-5.2^{* * *}$	-7.9***	-5.6 ***	-9.0 ***	+4.2***	$-1.2^{* *}$	-1.6***	-1.5***	-0.1	+0.1	-0.1
Retailer brands (Baseline: $\mathrm{n}=8507$; Follow-up: $\mathrm{n}=15075$)	-4.9***	+0.7	-7.7 ***	-8.5 ***	-6.8***	+1.1	$-2.8{ }^{* * *}$	-0.6 **	-0.04	$-1.2^{* * *}$	-0.2	-0.04
Entry-level retailer brands (Baseline: $\mathrm{n}=1117$; Follow-up: $\mathrm{n}=1120$)	-4.0**	-1.3	-6.6 ***	$-5.0 * *$	-2.5	+0.9	-1.2	-0.5	+1.2	+0.4	-0.7	-0.1
Hard discount (Baseline: $\mathrm{n}=3158$; Follow-up: $\mathrm{n}=4361$)	-3.7***	$-3.4 * *$	$-6.4 * *$	$-3.8{ }^{* * *}$	-4.6***	+1.4	$-1.5^{* *}$	-2.0 ***	-0.9*	-0.6	-0.2	-0.2
Specialised retailer brands ${ }^{1}$ (Baseline: $\mathrm{n}=1851$; Follow-up: $\mathrm{n}=2185$)	-3.9***	-1.0	-0.6	$-6.4 * *$	$-5.2^{* * *}$	+2.7*	-1.8*	+1.1	+0.2	-0.03	+1.6*	-0.3

Wrple cells: significant decrease in the frequency of presence
baseline and follow-up (" if $p<0.05$;** if $p<0.01$; ** if $p<0.001$)
Orange cells: signiifcant increase in the frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness/the class of sweetening ingredients or ingredients conveying sweetness as defined by OQALI in the products betwee baseline and follow-up (* if $p<0.05 ; *$ if $p<0.01 ; * *$ if $p<0.001$)
statistical test perfo
As specialised reta
snacking products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difificult to compare them to the other types of brands.
Other sugars: all mono- and disaccharides, alone or in combination (excluding sucrose, mention of "sugar" and lactose)
The proportions of products at baseline and follow-up, as well as the changes by class of sweetening ingredients or ingredients conveying sweetness and by type of brand, are presented in Annex 14.

4.4 Change in combinations of classes of sweetening ingredients or ingredients conveying sweetness

This section looks at the changes in the use, alone or in combination, of classes of sweetening ingredients or ingredients conveying sweetness. Initially (Section 4.4.1), the changes in the number of different classes found simultaneously in the same product are studied. This is followed by a presentation of the details of the changes in the data on the classes used alone or in combination (Section 4.4.2).

4.4.1 Study of the change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the products

4.4.1.1 All products combined

In addition to the significant increase in the number of products using no sweetening ingredients or ingredients conveying sweetness observed previously, the proportion of products using only one class also increased significantly (+3.5 points). Conversely, the proportion of products combining two, three, four, five or six different classes fell significantly (declines ranging from -0.3 points to -3.7 points). Note that the use of seven different classes (maximum number of combined classes found in products) for a few products remained stable between baseline and follow-up. This reflects a decline in the number of classes of sweetening ingredients or ingredients conveying sweetness used simultaneously in the same product (Table 10).

Table 10: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, all products combined (27 food categories monitored for changes).

Number of classes of sweetening ingredients or ingredients conveying sweetness ($n=$ number of products with the number of classes)	Change in the proportion of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
No sweetening ingredients or ingredients conveying sweetness (Baseline: $\mathrm{n}=\mathbf{2 6 5 5}$; Follow-up: $\mathrm{n}=6574$)	13,5\%	19\%	+5.5***
1 class (Baseline: $\mathrm{n}=6461$; Follow-up: $\mathrm{n}=12609$)	33\%	36\%	+3.5***
2 classes (Baseline: $\mathrm{n}=5591$; Follow-up: $\mathrm{n}=9248$)	28\%	27\%	-1.7***
3 classes (Baseline: $\mathrm{n}=3052$; Follow-up: $\mathrm{n}=4100$)	15\%	12\%	$-3.7 * * *$
4 classes (Baseline: $\mathrm{n}=1386$; Follow-up: $\mathrm{n}=1667$)	7\%	5\%	$-2.2 * * *$
5 classes (Baseline: $\mathrm{n}=461$; Follow-up: $\mathrm{n}=448$)	2\%	1\%	-1.0 ***
6 classes (Baseline: n=99; Follow-up: n=72)	1\%	0,2\%	-0.3***
7 classes (Baseline: $\mathrm{n}=18$; Follow-up: $\mathrm{n}=19$)	0,1\%	0,1\%	-0.04

[^12]
4.4.1.2 By product category

For 22 of the 27 categories, one or more significant changes were observed, demonstrating a reduction in the number of sweetening ingredients or ingredients conveying sweetness used simultaneously in a product (Table 11).

Conversely, for three categories (Margarines, Processed potato products and Cold sauces), the observed changes suggest an increase in the proportion of products using one or more classes to the detriment of the proportion of products with no sweetening ingredients or ingredients conveying sweetness (Table 11).

Only two categories (Chocolate products, and Frozen pastries and desserts) saw no significant change.

Table 11: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, by food category (27 categories monitored for changes).

Product category ($n=$ total number of products considered for trends, by product category)	Change in the proportion of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists (27 product categories monitored for changes)							
	No sweetening ingredients or ingredients conveying sweetness	1 class	2 classes combined	3 classes combined	4 classes combined	5 classes combined	6 classes combined	7 classes combined
All products combined (Baseline: $\mathrm{n}=19723$; Follow-up: $\mathrm{n}=34737$)	+5.5***	+3.5***	-1.7***	-3.7***	-2.2***	-1.0***	-0.3***	-0.04
Crackers (Baseline: $\mathrm{n}=551$; Follow-up: $\mathrm{n}=1082$)	+2.5	+0.6	+0.01	$-3.4 * *$	+0.3	0	0	0
Cereal bars (Baseline: n=169; Follow-up: n=181)	0	-0.7	-2.8	+13.6***	+16.0**	-10.1*	-12.5 ***	-3,6
Cakes and biscuits (Baseline: $\mathrm{n}=1723$; Follow-up: $\mathrm{n}=3120$)	+0.1	+7.7***	+0.4	-2.8*	-2.9**	-2.6***	-0.01	+0.04
Soft drinks (Baseline: n=891; Follow-up: n=2343)	+5.6***	+3.7*	-6.4**	-2.1	-0.6	-0,3	0	0
Soups and broths (Baseline: $\mathrm{n}=569$; Follow-up: $\mathrm{n}=788$)	+5.7*	+0.4	-3.3	-1.5	-1.1	-0.2	0	0
Breakfast cereals (Baseline: $\mathrm{n}=332$; Follow-up: $\mathrm{n}=659$)	+7.3***	-6.0	+8.7**	+0.9	-7.8***	-2.9**	-0.3	0
Delicatessen meats (Baseline: n=1161; Follow-up: n=1722)	+5.7***	-4.1*	+0.7	-2.0	-0.5	+0.2	0	0
Chocolate products (Baseline: n=731; Follow-up: n=1013)	+0.1	+2.9	-3.1	+1.0	-0.9	-0.01	-0.02	+0.1
Fruit purées, compotes and desserts (Baseline: $\mathrm{n}=480$; Follow-up: $\mathrm{n}=972$)	+2.3	+3.5	-5.6**	-0.3	0	0	0	0
Jams (Baseline: $\mathrm{n}=337$; Follow-up: $\mathrm{n}=781$)	0	+20.9***	-17.1***	-3.0*	-0,9	0	0	0
Canned fruits (Baseline: $\mathrm{n}=181$; Follow-up: $\mathrm{n}=245$)	0	+20.6***	$-18.2^{* * *}$	-2,4	0	0	0	0
Ice-creams and sorbets (Baseline: $\mathrm{n}=1416$; Follow-up: $\mathrm{n}=1953$)	0	+0.7	+0.7	+4.1*	-1.6	-2.2	-1.7**	+0.1
Fruit juices and nectars (Baseline: $\mathrm{n}=816$; Follow-up: $\mathrm{n}=1637$)	+2.2*	-1.7	+0.6	-1.2*	+0.1	0	0	0
Margarines (Baseline: n=95; Follow-up: $\mathrm{n}=109$)	-9.7*	+9.7*	0	0	0	0	0	0
Bread products (Baseline: $\mathrm{n}=584$; Follow-up: $\mathrm{n}=1740$)	+16.9***	-0.1	-11.2***	-4.8***	-0.1	-0,7	0	0
Ready-to-eat canned meals (Baseline: n=794; Follow-up: n=2672)	+23.9***	-10.6***	-10.5***	-1.8*	-0.8*	-0.1	0	0
Ready-to-eat fresh meals (Baseline: $\mathrm{n}=779$; Follow-up: $\mathrm{n}=1416$)	+6.3**	+9.1***	-3.9*	-7.5***	-4.2***	+0.2	+0.1	0
Ready-to-eat frozen meals (Baseline: $\mathrm{n}=1861$; Follow-up: $\mathrm{n}=2108$)	+12.8***	-2.1	-2.9*	-5.7 ***	-1.4**	-0.6*	-0.1	0
Dessert mixes (Baseline: $\mathrm{n}=160$; Follow-up: $\mathrm{n}=329$)	+9.3**	+4.6	-6.2	-4.8	-2,8	0	0	0
Fresh dairy products and desserts (Baseline: $\mathrm{n}=1613$; Follow-up: $\mathrm{n}=3115$)	+4.4***	+9.5***	-4.0**	-7.3***	-2.3 ***	-0.1	+0.004	-0,2
Fresh delicatessen products (Baseline: n=1141; Follow-up: n=2293)	+15.1***	+1.5	-4.9**	-7.1***	-3.7***	-0.8*	-0.04	0
Processed potato products (Baseline: n=683; Follow-up: n=791)	-6.6*	+10.3***	-2.0	-1.2	-0,6	0	0	0
Hot sauces (Baseline: $\mathrm{n}=295$; Follow-up: $\mathrm{n}=609$)	+12.3***	$-12.4 * * *$	-0.7	+0.2	+0.6	0	0	0
Cold sauces (Baseline: n=544; Follow-up: n=623)	-5.3 **	+2.0	-0.7	+3.3*	+0.6	0	0	0
Syrups (Baseline: $\mathrm{n}=316$; Follow-up: $\mathrm{n}=681$)	-0.4	+4.7*	+17.2***	-21.9***	+0.4	0	0	0
Frozen snacking products (Baseline: n=930; Follow-up: n=1147)	+0.7	+6.3**	+2.8	-5.4***	-3.1**	-1.5*	+0.2	+0.1
Frozen pastries and desserts (Baseline: n=571; Follow-up: n=608)	-0.03	+3.6	-1.8	-0.3	-2.2	+0.4	-0.2	+0.5

Purple cells: significant decrease in the frequency of presence of the considered number of classes of sweetening ingredients or ingredients conveying sweetness as defined by OQALI in the products between baseline and follow-up
$\left({ }^{*}\right.$ if $p<0.05 ; *$ if $p<0.01 ; * *$ if $p<0.001$)
${ }^{*}$ if $p<0.05$; $* *$ if $p<0.01$; $* * *$ if $p<0.001$)
${ }^{(*}$ if $p<0.05$; ** if $p<0.01 ; * * *$ if $p<0.001$)

The proportions of products with no sweetening ingredients or using one or several classes of sweetening ingredients at baseline and follow-up, as well as the changes by number of classes of sweetening ingredients or ingredients conveying sweetness and by product category (27 product categories monitored for changes), are presented in Annex 15.

4.4.1.3 By type of brand

For all the types of brands, there was a reduction in the cumulative use of several classes of sweetening ingredients or ingredients conveying sweetness in the same product (Table 12). In particular, there were many significant changes observed for national brands, retailer brands and hard discount products, while fewer were seen for entry-level retailer brands and specialised retailer brands. As a reminder, the share of products with no sweetening ingredients or ingredients conveying sweetness increased for every type of brand.

Table 12: Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product between baseline and follow-up, by type of brand ($\mathbf{2 7}$ food categories monitored for changes).

Type of brand ($n=$ total number of products considered for changes, by type of brand)	Change in the proportion of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists (27 product categories monitored for changes)							
	No sweetening ingredients or ingredients conveying sweetness	1 class	2 classes combined	3 classes combined	4 classes combined	5 classes combined	6 classes combined	7 classes combined
All products combined (Baseline: $\mathbf{n = 1 9 7 2 3 ;}$ Follow-up: $\mathrm{n}=34737$)	+5.5***	+3.5***	-1.7***	-3.7 ***	-2.2***	-1.0***	-0.3***	-0.04
National brands (Baseline: $\mathrm{n}=5089$; Follow-up: $\mathrm{n}=11532$)	+6.4***	+2.2**	$-2.2 * *$	-2.3 ***	-2.3 ***	-1.5 ***	$-0.4 * *$	+0.04
Retailer brands (Baseline: $\mathrm{n}=8507$; Follow-up: $\mathrm{n}=15075$)	+4.9***	+4.2***	-1.6**	-4.5***	-1.9***	$-0.8{ }^{* * *}$	$-0.3^{* * *}$	-0.05
Entry-level retailer brands (Baseline: $\mathrm{n}=1117$; Follow-up: $\mathrm{n}=1120$)	+4.0**	+2.3	-3.6	-1.9	-0.1	-0.3	-0.2	-0.3
Hard discount (Baseline: $\mathrm{n}=3158$; Follow-up: $\mathrm{n}=4361$)	+3.7***	+3.3**	-1.1	-1.9*	-2.8 ***	-0.7*	-0.3 **	-0,1
Specialised retailer brands ${ }^{1}$ (Baseline: $\mathrm{n}=1851$; Follow-up: $\mathrm{n}=2185$)	+3.9***	+0.5	-2.1	-2.7*	+0.2	+0.1	-0.1	+0.2

Purple cells: significant decrease in t
$\mathrm{p}<0.05 ;{ }^{* *}$ if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Orange cells: significant increase in t
$\mathrm{p}<0.05$; ** if $\mathrm{p}<0.01$; *** if $\mathrm{p}<0.001$)
${ }^{1}$ As specialised retailer brands were present in only six product categories out of the 27 studied (5 product categories for which baseline and follow-up data were available: Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difficult to compare them to the other types of brands.

The proportions of products at baseline and at follow-up, as well as the changes by number of different classes of sweetening ingredients or ingredients conveying sweetness and by type of brand (27 product categories monitored for changes), are presented in Annex 16.

4.4.2 Study of the change in the use of combinations of classes of sweetening ingredients or ingredients conveying sweetness found in the products

This study details the changes in the use of classes of sweetening ingredients or ingredients conveying sweetness depending on whether they were used alone or in combination. A total of 346 different combinations were found for all the products studied, at baseline and/or followup. While 225 combinations were found over the two periods considered, 61 were only present at baseline and 60 only at follow-up. All these results, for all products combined, are available in Excel format on the OQALI website "Changes in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrence without grou_prod".

Of these 346 combinations, only 17 were used in 1% or more of the products. It was therefore decided to group together the classes that were absent from these 17 most commonly used combinations, i.e. Caramel, Other ingredients conveying sugars, Bulk sweeteners, Honey and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness, to form the "Other classes" combination. Note that the Intense sweeteners class was
not found among the 17 most commonly used combinations, but as these substances were considered to be a particular case, they were not included in "Other classes".

4.4.2.1 All products combined

After grouping the classes together as mentioned above, 109 combinations were found in at least one product, 21 of which were found in 1% or more of products at baseline. Again, combinations with frequency of presence values below 1% at baseline, all products combined, were grouped together in "Other combinations". Twenty-two combinations have therefore been detailed below. These same groupings were used to conduct analyses by product category and type of brand. Note that combinations including substances from the Intense sweeteners class, which was not included in "Other classes", were used very little and have therefore been added to "Other combinations". The results without this last grouping are available in Excel format on the OQALI website "Changes in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurrence with group_prod".

Most combinations of classes of sweetening ingredients or ingredients conveying sweetness fell significantly. Conversely, the use of three combinations increased significantly (Table 13).

Table 13: Change in the proportion of products by combination of sweetening ingredients or ingredients conveying sweetness considered, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products with each of the combinations considered, at baseline).

Combinations of classes of sweetening ingredients or ingredients conveying sweetness found in the products ($n=$ number of products with the combination considered)	Change in the proportion of products with the combination of classes of sweetening ingredients or ingredients conveying sweetness considered, all products combined (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
at least one sweetening ingredient or ingredient conveying sweetness (Baseline: $\mathbf{n}=17068$; Follow-up: $\mathbf{n = 2 8 1 6 3}$)	86,5\%	81\%	$-5.5 * * *$
sucrose (Baseline: n=3576; Follow-up: n=7741)	18\%	22\%	+4.2***
other combinations ${ }^{1}$ (Baseline: n=2452; Follow-up: n=3170)	12\%	9\%	-3.3 ***
sucrose / syrups (Baseline: n=1549; Follow-up: n=2293)	8\%	7\%	-1.3 ***
other sugars (Baseline: $\mathrm{n}=963$; Follow-up: $\mathrm{n}=1526$)	5\%	4\%	-0.5**
fruit juices and concentrates (Baseline: n=954; Follow-up: n=2130)	5\%	6\%	+1.3***
sucrose / fruit juices and concentrates (Baseline: n=923; Follow-up: n=2721)	5\%	8\%	+3.2***
sucrose / other sugars (Baseline: n=873; Follow-up: n=1167)	4\%	3\%	$-1.1 * * *$
sucrose / syrups / lactose (Baseline: $\mathrm{n}=609$; Follow-up: $\mathrm{n}=815$)	3\%	2\%	-0.7***
sucrose / lactose (Baseline: n=547; Follow-up: n=657)	3\%	2\%	$-0.9 * * *$
sucrose / syrups / fruit juices and concentrates (Baseline: $\mathrm{n}=526$; Follow-up: $\mathrm{n}=714$)	3\%	2\%	$-0.6 * * *$
sucrose / other classes ${ }^{2}$ (Baseline: $\mathrm{n}=469$; Follow-up: $\mathrm{n}=846$)	2\%	2\%	+0.1
sucrose / syrups / other classes ${ }^{2}$ (Baseline: n=431; Follow-up: n=789)	2\%	2\%	+0.1
sucrose / syrups / other sugars (Baseline: n=402; Follow-up: n=487)	2\%	1\%	-0.6***
lactose (Baseline: n=393; Follow-up: $\mathrm{n}=369$)	2\%	1\%	-0.9 ***
sucrose / syrups / lactose / other classes ${ }^{2}$ (Baseline: n=352; Follow-up: n=472)	2\%	1\%	$-0.4 * * *$
sucrose / other sugars / lactose (Baseline: $\mathrm{n}=349$; Follow-up: $\mathrm{n}=312$)	2\%	1\%	-0.9***
syrups (Baseline: $\mathrm{n}=342$; Follow-up: $\mathrm{n}=523$)	2\%	2\%	-0.2*
sucrose / syrups / other sugars / lactose (Baseline: $\mathrm{n}=313$; Follow-up: $\mathrm{n}=284$)	2\%	1\%	$-0.8{ }^{* * *}$
syrups / other sugars (Baseline: $\mathrm{n}=311$; Follow-up: $\mathrm{n}=388$)	2\%	1\%	$-0.5 * * *$
other sugars / lactose (Baseline: $\mathrm{n}=279$; Follow-up: $\mathrm{n}=305$)	1\%	1\%	$-0.5 * * *$
sucrose / syrups / other sugars / other classes ${ }^{2}$ (Baseline: n=253; Follow-up: n=299)	1\%	1\%	-0.4***
sucrose / syrups / other sugars / lactose / other classes ${ }^{2}$ (Baseline: n=202; Follow-up: n=155)	1\%	0,4\%	-0.6 ***

1 "Other combinations" groups together combinations of classes whose frequency of presence was below 1% at baseline, all product categories combined
2 "Other classes" groups together the following classes: Caramel, Other ingredients conveying sugars, Bulk sweeteners, Honey, and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness
Purple cells: significant decrease in the frequency of presence of the combination of classes of sweetening ingredients or ingredients conveying sweetness as defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if $p<0.05$; ** if $p<0.01$; *** if $p<0.001$)
Orange cells: significant increase in the frequency of presence of the combination of classes of sweetening ingredients or ingredients conveying sweetness as defined by OQALI in the products between baseline and follow-up (${ }^{*}$ if $\mathrm{p}<0.05$; ${ }^{* *}$ if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Statistical test performed: chi-square test
Indeed, of the 22 most commonly used combinations, 17 saw a significant decline in use between baseline and follow-up (ranging from -0.2 points to -3.3 points). Thirteen of these 17 combinations simultaneously combined between two and five classes of sweetening ingredients or ingredients conveying sweetness.

Conversely, the use of Sucrose alone, Fruit juices and concentrates alone and the combination of these two classes (Sucrose/Fruit juices and concentrates) increased significantly (+4.2 points, +1.3 points and +3.2 points, respectively). Note that use of the Sucrose class alone was the combination most frequently found at both baseline (18\%) and follow-up (22\%). In addition, these three combinations only involved a single class or a combination of two classes.

These results were therefore consistent with what was observed by class of sweetening ingredients or ingredients conveying sweetness (Section 4.3.1. All products combined) with the significant increase in the use of the Fruit juices and concentrates class and the significant decrease in the use of the other classes (except for Honey), as well as by number of combined classes (Section 4.4.1.1. All products combined) with the significant increase in the proportion of products using no sweetening ingredients or ingredients conveying sweetness or only one class, while there was a fall in the simultaneous use of a greater number of classes.

4.4.2.2 By product category

The change in the use of combinations of sweetening ingredients or ingredients conveying sweetness, by product category, is available in Excel format on the OQALI website "Changes in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurren with group_category".

Among the 27 product categories studied, not all class combinations were found for each category. Only six product categories contained all 22 combinations studied: Ready-to-eat canned meals, Ready-to-eat fresh meals, Ready-to-eat frozen meals, Fresh dairy products and desserts, Fresh delicatessen products and Frozen snacking products. For the majority of product categories, the frequency of presence for many combinations was stable between baseline and follow-up.

Among the combinations that changed significantly between baseline and follow-up, the vast majority saw a significant fall: with the exception of the Margarines, Dessert mixes, Cold sauces and Frozen pastries and desserts categories, for which none of the combinations changed significantly, all categories had at least one combination whose use fell significantly (ranging from $\mathbf{- 0 . 6}$ points to $\mathbf{- 2 4 . 6}$ points). The significant changes observed all concerned declines, for three categories, and partly explain the significant reduction in the use of at least one sweetening ingredient or ingredient conveying sweetness observed at category level: Delicatessen meats (-3.6 points for Other sugars), Hot sauces (-7.4 points for Sucrose) and Ready-to-eat canned meals (8 combinations decreased significantly ranging from -1.5 points to -3.2 points).

For 19 of the 27 product categories studied, the use of at least one combination increased significantly between baseline and follow-up, but was each time accompanied by a significant reduction for at least one other combination. For 10 product categories, the significant increase in the use of one or more combinations was not sufficient to offset the significant decreases observed for other combinations:

- Soft drinks, Ready-to-eat fresh meals, Ready-to-eat frozen meals, Fresh dairy products and desserts and Fresh delicatessen products (between 2 and 3 combinations increased, while 3 to 8 combinations decreased);
- Soups and broths, Breakfast cereals, Fruit juices and nectars, Bread products and Ready-to-eat frozen meals (only 1 combination increased significantly, while 1 to 8 combinations decreased significantly).

For 10 categories, the significant reduction in the use of certain combinations offset the use of those that increased significantly, partly explaining why no significant change was observed at category level. This was the case with the following 10 categories: Cakes and biscuits, Frozen snacking products, Chocolate products, Ice creams and sorbets, Fruit purées, compotes and desserts, Syrups, Cereal bars, Jams, Canned fruits and Crackers.

Lastly, in the Processed potato products category, the significant increase in the proportion of products with at least one sweetening ingredient or ingredient conveying sweetness observed at category level can be explained by the significantly increased use of three combinations, while only one combination was used significantly less.

Among the combinations whose use increased significantly, the use of the Fruit juices and concentrates class alone and/or in combination with the Sucrose class increased significantly for 10 categories: Cakes and biscuits, Soft drinks, Soups and broths, Fruit purées, compotes and desserts, Fruit juices and nectars, Bread products, Ready-to-eat frozen meals, Fresh dairy products and desserts, Fresh delicatessen products, as well as Syrups.

4.4.2.3 By type of brand

The change in the use of combinations of sweetening ingredients or ingredients conveying sweetness, by type of brand, is available in Excel format on the OQALI website "Changes in the use of sweetening ingredients or ingredients conveying sweetness" and tab "Co_occurren with group_brands".

All the types of brands had all 22 of the combinations studied at baseline and/or follow-up. The number of combinations with significant changes differed between types of brands, ranging from five combinations for entry-level retailer brands to $\mathbf{1 6}$ for retailer brands. Furthermore, every type of brand had combinations whose use fell significantly (ranging from -0.2 points to -4.2 points), while a smaller number of combinations saw a significant increase (ranging from +0.5 points to +5.9 points).

Thus, for national brands, retailer brands and hard discount products, a significant increase was observed for the Sucrose class alone, the Fruit juices and concentrates class alone and the combination of these two classes (Sucrose/Fruit juices and concentrates). It should be noted that hard discount products also had a significantly higher proportion of products using the Syrups/Other sugars combination. Conversely, the use of a large number of combinations fell significantly: 12 significant decreases for national brands, 13 for retailer brands and eight for hard discount products.

As with the national brands, retailer brands and hard discount products, entry-level retailer brands saw a significant increase in the use of the Sucrose class alone. In addition, the use of Sucrose/Syrups/Lactose/Other classes also increased significantly for this type of brand while, conversely, three combinations were used significantly less between baseline and follow-up: Sucrose/Syrups, Sucrose/Other sugars/Lactose and the Lactose class alone.

Lastly, specialised retailer brands saw a significant increase for two combinations (Fruit juices and concentrates class used alone; Sucrose/Syrups/Other sugars/Other classes) while a
significant decrease was observed for six combinations. As a reminder, because this type of brand focuses on frozen foods, it is difficult to compare it with the other types of brands.

4.5 Study of reformulation regarding sweetening ingredients or ingredients conveying sweetness for products present at both baseline and follow-up

This section details the changes concerning the use of classes of sweetening ingredients or ingredients conveying sweetness for paired products, i.e. in products that were present at both baseline and follow-up, in a strictly identical or modified form. The aim is to determine whether the changes observed previously can be partly explained by reformulations of pre-existing products. As a reminder, the numbers and proportions of paired products studied in the part on changes in the use of sweetening ingredients or ingredients conveying sweetness are presented by category and type of brand in Annex 17.

4.5.1 Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness

Contrary to what was observed for all the products taken into account for the change study, there was no significant change in the use of at least one sweetening ingredient or ingredient conveying sweetness for all the paired products: a downward change was however noted (-0.5 points; Table 14). In addition, fewer significant changes were observed for all the paired products than for all products combined (paired and non-paired), but they were still in the same direction (Table 8, Table 9 and Table 14).

Of the 11 classes of sweetening ingredients or ingredients conveying sweetness, four saw a significant decline in use (Syrups: -3.9 points; Lactose: -3.6 points; Other sugars: -2.7 points and Caramel: -1.3 points). There was also a significant increase in the Fruit juices and concentrates class (+1.7 points). These five classes all therefore changed significantly in the same direction, whether it concerned just the paired products or all the products taken into account for the change study. This means that for these classes, reformulations of existing products took place between baseline and follow-up, which may partly explain the changes observed for all the products taken into account for the change study.

By product category and for all classes combined, only the Ready-to-eat canned meals category saw a significant decline in the use of at least one sweetening ingredient or ingredient conveying sweetness, for the paired products (-7.8 points). In addition, 15 product categories saw a significant change in use, most often a decline, for at least one class of sweetening ingredients or ingredients conveying sweetness, without this leading to a significant change at category level.

Lastly, as at class and category levels, the number of significant changes observed for paired products at type of brand level was small compared with that observed for all products taken into account (paired and non-paired products combined) and no significant change was observed for all classes combined. Among the five types of brands studied, only three saw significant changes for one or more classes, most often reductions (1 change for national brands, 2 for hard discount products and 5 for retailer brands).

Table 14: Change in the frequency of presence by class of sweetening ingredients or ingredients conveying sweetness, all products combined, by food category and by type of brand, for paired products (27 categories monitored for changes)

Product category ($\mathrm{n}=$ total number of products considered for the pairs, all paired products combined, by product category and by type of brand)	Change in the proportion of paired products (27 product categories monitored for changes)											
	All classes combined	Sucrose	Syrups	Other sugars ${ }^{1}$	Lactose	Fruit juices and concentrates	Caramel	Other ingredients conveying sugars	Bulk swe eteners	Intense sweeteners	Honey	Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness
All products combined (number of paired products: $\mathrm{n}=10549$)	-0.5	-0.3	$-3.9 * * *$	$-2.7 * * *$	-3.6 ***	+1.7**	$-1.3^{* * *}$	-0.5	-0.3	+0.1	-0.1	-0.1
By product category												
Crackers (number of paired products: $\mathrm{n}=382$)	+1.0	0	0	-2.9	-3.7	0	+0.3	-0.3	+0.3	0	0	0
Cereal bars (number of paired products: $\mathrm{n}=83$)	0	0	0	-6.0	-10.8*	-2.4	$-20.5^{* * *}$	-3.6	+8.4	0	-19.3***	0
Cakes and biscuits (number of paired products: $\mathrm{n}=676$)	0	+0.9	-0.6	$-5.8{ }^{* *}$	-5.8 **	+1.2	-2.1*	0	-3.8 *	0	-0.6	-0.3
Soft drinks (number of paired products: $n=395$)	-1.0	+2.8	-13.4***	+0.5	0	-2.0	-0.8	-0.3	0	+5.3	-0.5	-0.3
Soups and broths (number of paired products: $\mathrm{n}=298$)	+1.7	+5.7	+3.4	-2.0	-5.7	+1.3	-2.0	0	0	0	0	0
Breakfast cereals (number of paired products: $n=151$)	0	-0.7	+1.3	$-12.6{ }^{* * *}$	-0.7	+0.7	-11.9***	+4.0	0	0	-6	-2.6
Delicatessen meats (number of paired products: $n=746$)	+0.5	+1.1	+2.1	-1.7	-2.4	0	+0.4	0	-0.1	0	0	0
Chocolate products (number of paired products: $\mathrm{n}=466$)	0	0	-1.3	-1.9	+0.4	0	+0.2	+2.4	0	0	+0.2	0
Fruit purées, compotes and desserts (number of paired products: $\mathrm{n}=230$)	+4.3	0	$-12.2 * * *$	-0.4	0	+10.9***	0	0	0	0	0	0
Jams (number of paired products: $n=239$)	0	+0.4	$-12.1{ }^{* * *}$	$-10.5^{* * *}$	0	-2.1	0	+0.4	0	0	0	0
Canned fruits (number of paired products: $\mathrm{n}=97$)	0	+1.0	-6.2	0	0	-2.1	0	0	0	0	0	0
Ice creams and sorbets (number of paired products: $n=826$)	0	+0.5	-0.6	-11.1***	-4.1	+0.6	-0.1	-3.4	-0.2	-0.1	+0.7	0
Fruit juices and nectars (number of paired products: $n=534$)	+0.4	+2.1	-2.4	-0.2	0	+0.6	0	0	0	+0.7	0	0
Margarines (number of paired products: $\mathrm{n}=77$)	+3.9	0	0	0	0	+3.9	0	0	0	0	0	0
Bread products (number of paired products: $\mathrm{n}=331$)	+0.3	+2.1	-6.9*	$-10.6{ }^{* * *}$	-4.5*	+6.6***	0	-0.6	-0.6	0	0	0
Ready-to-eat canned meals (number of paired products: $n=396$)	-7.8*	-3.3	0	-4.5	$-9.1^{* * *}$	+2.3	-2.8	-0.3	-0.3	0	0	0
Ready-to-eat fresh meals (number of paired products: $\mathrm{n}=347$)	-3.5	-2.0	-3.7	-5.8	-11.0***	+2.9	-4.6*	-0.6	0	0	+1.7	0
Ready-to-eat frozen meals (number of paired products: $n=745$)	-4.7	-7.8**	-0.8	-2.0	$-9.4 * * *$	+6.3***	$-3.8{ }^{* *}$	-0.4	0	0	+0.3	0
Dessert mixes (number of paired products: $\mathrm{n}=82$)	0	0	-8.5	+2.4	-2.4	-1.2	0	-2.4	+1.2	0	0	0
Fresh dairy products and desserts (number of paired products: $\mathrm{n}=769$)	-1.2	+0.5	-11.4***	-1.6	-1.6	+1.2	-3.1*	-3.0 **	+0.4	-0.3	+0.1	-0.1
Fresh delicatessen products (number of paired products: $\mathrm{n}=590$)	-3.7	-4.9	-8.8 ***	+4.1	$-6.8{ }^{* *}$	+1.7	-2.2	-0.8	-0.8	0	-0.2	-0.2
$\begin{gathered} \text { Processed potato products } \\ \text { (number of paired products: } n=437 \text {) } \end{gathered}$	+5.7	-0.7	+0.2	+4.6	-0.5	0	-1.4	0	0	$-1.8{ }^{*}$	0	0
Hot sauces (number of paired products: $n=183$)	+2.2	+2.2	+6.6*	+2.7	-9.3 **	+5.5	-1.1	+0.5	0	0	0	0
Cold sauces (number of paired products: $n=368$)	0	+3.8	-6.0	+0.3	+0.8	+4.9	-1.6	0	0	0	0	0
Syrups (number of paired products: $\mathrm{n}=195$)	0	+5.1	$-33.8{ }^{* * *}$	0	0	0	+13.8***	0	0	0	0	0
Frozen snacking products (number of paired products: $\mathrm{n}=531$)	-0.6	-3.2	-4.7	-2.3	-2.6	-0.8	-0.8	-0.2	0	+0.2	+0.2	0
Frozen pastries and desserts (number of paired products: $n=375$)	0	+0.8	-2.4	-2.7	-1.6	+3.5	+0.5	+0.8	-0.8	0	0	+0.5
By type of brand ${ }^{2}$												
National brands (number of paired products: $\mathrm{n}=2043$)	0	+0.2	-1.4	-1.6	-3.6 **	+2.2	-1.1	-0.8	-0.4	+0.9	+0.1	-0.2
Retailer brands (number of paired products: $\mathrm{n}=5274$)	-0.9	-0.5	$-5.5{ }^{* * *}$	$-3.2{ }^{* * *}$	$-4.2{ }^{* * *}$	+1.6*	$-1.4 * *$	-0.4	-0.2	-0.1	-0.3	0
Entry-level retailer brands (number of paired products: $\mathrm{n}=607$)	-0.7	+0.7	-4.0	-1.0	-2.5	-0.2	-0.7	-0.5	-0.5	+1	-0.5	-0.2
Hard discount (number of paired products: $\mathrm{n}=1583$)	0	+0.4	-3.9*	-3.1*	-2.6	+1.7	-1.3	-0.5	-0.3	-0.3	-0.4	-0.2
Specialised retailer brands ${ }^{3}$ (number of paired products: $n=1041$)	-0.6	-1.5	-0.9	-3.3	-3.0	+2.2	-1.5	-0.3	-0.1	0	+0.6	-0.1

Orange eclis: significant increase in the frequency
Statistical test performed: chi-square test
12 Oter sugars: all mono- and disaccharides alone or in combination (excluding sucrose, mention of "sugar" and lactose)
${ }^{1}$ 2Results for specialised organic retailer brands are not included (insufficient coverage
${ }^{2}$ Results for specialised organic retailer brands are not included (insufficient coverage)
products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difficult to compare them to the other types of brands.
The proportions of paired products at baseline and follow-up, as well as the changes for paired products by class of sweetening ingredients or ingredients conveying sweetness and for all products combined, by product category and by type of brand, are presented in Annex 18.

4.5.2 Change in combinations of classes of sweetening ingredients or ingredients conveying sweetness in the paired products

4.5.2.1 Change in the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the paired products

All paired products combined, almost three-quarters (73%; $n=7,735$) saw no change in the number of different classes of sweetening ingredients or ingredients conveying sweetness used between baseline and follow-up (Figure 38). Nineteen per cent of products ($\mathrm{n}=1,963$) saw a decreasing number of classes, while a higher number of classes were used in only 8% of products ($\mathrm{n}=851$) (Figure 38). Overall, these same changes were found by product category (Figure 39) and by type of brand (Figure 40).

Figure 38: Proportion of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, all paired products combined (among the $\mathbf{2 7}$ food categories monitored for changes).

Figure 39: Proportion of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, by food category (27 categories monitored for changes).

Figure 40: Proportions of paired products for which the number of different classes of sweetening ingredients or ingredients conveying sweetness remained the same, increased or decreased, by type of brand (27 food categories monitored for changes).

The proportion of products for which the number of classes remained stable varied from 51% (Cereal bars) to 100\% (Margarines) for the product categories, and from 71\% (retailer brands) to 78% (specialised retailer brands) for the types of brands. The proportion of products for which the number of classes decreased between baseline and follow-up varied from 0% (Margarines) to 45\% (Cereal bars) for the product categories, and from 15\% (national brands, specialised retailer brands) to 21% (retailer brands) for the types of brands. Lastly, the proportion of products for which the number of classes increased varied from 0\% (Margarines) to 14% (Fresh dairy products and desserts) for the product categories, and from 7% (specialised retailer brands) to 9% (national brands, hard discount) for the types of brands. Thus, the numbers of classes found in the products both decreased and increased in all the categories except for Margarines.

Note that an identical number of classes does not necessarily mean that there was no change in the use of classes of sweetening ingredients or ingredients conveying sweetness: the number of classes may have remained the same, but there may have been substitutions, with one class replacing another.

4.5.2.2 Change in the most commonly used combinations of classes of sweetening ingredients or ingredients conveying sweetness

As with the previous sections on combinations of classes (Section 3.4. Combinations of classes of sweetening ingredients or ingredients conveying sweetness and Section 4.4. Change in combinations of classes of sweetening ingredients or ingredients conveying sweetness), a descriptive study of the combinations required groupings to be made for the least used ingredient classes. The "Other classes" combination therefore includes the following classes: Caramel, Other ingredients conveying sugars, Bulk sweeteners, Honey, and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness (i.e. 5 of the 11 classes studied). In addition, combinations of classes with a frequency of presence below 2.5\% were grouped together in "Other combinations".

Overall, the most commonly used combinations of classes of sweetening ingredients or ingredients conveying sweetness were the same at both baseline and follow-up, and in fairly similar proportions (Figure 41). This means that, overall for all paired products combined, there were no major substitutions of one class or combination of classes by another.

As observed for all products combined (Section 4.4.2.1), the Sucrose class used alone was also the most commonly used combination for the paired products (found in 19% of paired products at baseline and 21% at follow-up). The second most common combination at both baseline and follow-up was Sucrose/Syrups (8% and 7% of paired products, respectively). The use of "Other sugars" alone remained stable (6\% of paired products) (Figure 41).

Breakdown of products according to the combinations of classes of sweetening ingredients or ingredients conveying sweetness found in their ingredient lists, all paired products combined, at baseline (among the $\mathbf{2 7}$ product categories monitored for changes)

Number of paired products studied: $n=10549$

Breakdown of products according to the combinations of classes of sweetening ingredients o ingredients conveying sweetness found in their ingredient lists, all paired products combined, at follow-up (among the 27 product categories monitored for changes)

Figure 41: Breakdown of paired products by the most commonly used combination of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists, all paired products combined, at baseline and at follow-up (among the $\mathbf{2 7}$ food categories monitored for changes).

4.6 Change in the use of intense sweeteners

This section focuses on the use of intense sweeteners and supplements the previous sections by providing more detail on the changes for each intense sweetener. In the remainder of this section, the term "sweetened" refers only to intense sweeteners and does not include bulk sweeteners.

4.6.1 Change in the frequency of presence by intense sweetener

4.6.1.1 All products combined

As a reminder, uses of at least one intense sweetener fell significantly between baseline and follow-up, for all products combined (-0.5 points; 2% of products at follow-up). Of the eight intense sweeteners found at baseline and/or follow-up of the 11 studied, four saw a significant decline in use: acesulfame K (-0.8 points), aspartame (-1.4 points), cyclamates (-0.2 points) and saccharins (-0.2 points) (Table 15).

Conversely, the use of sucralose and steviol glycosides increased significantly (+0.5 points and +0.4 points, respectively; Table 15) between baseline and follow-up. It should be noted that steviol glycosides have only been authorised for use in the European Union since December 2011 (Commission 2011). However, because the data for the baseline were collected before their authorisation - in particular for the Soft drinks, Syrups and Fresh dairy products and desserts categories, where steviol glycosides were mainly found - this largely explains the significant increase observed for this intense sweetener.

Table 15: Change in the frequency of presence by intense sweetener, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products each with intense sweeteners, at baseline).

Intense sweetener found in the products ($n=$ number of products with the intense sweetener considered)	Change in the proportion of products containing at least the intense sweetener considered, all product categories combined (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
At least one intense sweetener (Baseline: $\mathrm{n}=490$; Follow-up: $\mathrm{n}=687$)	2,5\%	2\%	-0.5***
Acesulfame K (Baseline: $\mathrm{n}=428$; Follow-up: $\mathrm{n}=463$)	2,2\%	1,3\%	-0.8***
Aspartame (Baseline: n=360; Follow-up: n=155)	1,8\%	0,4\%	-1.4***
Sucralose (Baseline: $\mathrm{n}=125$; Follow-up: $\mathrm{n}=390$)	0,6\%	1,1\%	+0.5***
Cyclamates (Baseline: n=58; Follow-up: n=47)	0,3\%	0,1\%	-0.2***
Saccharins (Baseline: n=53; Follow-up: n=29)	0,3\%	0,1\%	-0.2***
Neohesperidin DC (Baseline: $\mathrm{n}=6$; Follow-up: $\mathrm{n}=10$)	0,03\%	0,03\%	-0.002
Steviol glycosides (Baseline: n=5; Follow-up: n=136)	0,03\%	0,4\%	+0.4***
Neotame (Baseline: n=0; Follow-up: n=1)	0\%	0,003\%	+0.003
Advantame (Baseline: n=0; Follow-up: n=0)	0\%	0\%	-
Thaumatin (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=0$)	0\%	0\%	-
Salt of aspartame-acesulfame (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=0$)	0\%	0\%	-

Purple cells: significant decrease in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up (* if
$\mathrm{p}<0.05$; ** if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Orange cells: significant increase in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up (* if
$\mathrm{p}<0.05$; ${ }^{* *}$ if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Statistical test performed: chi-square test

Furthermore, even though its use fell significantly, acesulfame K remained the most commonly used intense sweetener in sweetened products, at both baseline and follow-up. Conversely, aspartame, which was initially used as much as acesulfame K, saw its use fall below that of sucralose (whose use increased significantly between baseline and follow-up). This change may be partly explained by mistrust towards aspartame in the years 2000-2010 following suspicions of a link between consumption of this intense sweetener and the occurrence of brain tumours, multiple sclerosis or epileptic seizures, even though the French and European health authorities ruled that these links had not been scientifically proven (AFFSA 2002, European Food Safety Authority 2013). In July 2023, the International Agency for Research on Cancer (IARC) classified aspartame as "Possibly carcinogenic to humans (Group 2B)" on the basis of limited evidence for cancer in humans (IARC 2023).

Note also the appearance of neotame, found in just one of the products at follow-up. Lastly, three intense sweeteners were not found at either baseline or follow-up: advantame, thaumatin and salt of aspartame-acesulfame.

4.6.1.2 By relevant product category

As indicated in Section 3.3.2.9, the use of intense sweeteners was concentrated in four categories, which constitute the relevant categories. For the change study, data were available on only three of these four categories between the two monitoring periods. For this section, therefore, only Soft drinks, Fresh dairy products and desserts and Syrups were studied.

These three categories did not use all the intense sweeteners studied and did not use each of them in the same proportions (Table 16). The Soft drinks and Fresh dairy products and desserts categories used seven of the eight intense sweeteners found in all products combined. The Syrups category used slightly less, with five intense sweeteners common to all three categories (acesulfame K, aspartame, sucralose, cyclamates and steviol glycosides). Note that steviol glycosides were only found in three products in the Soft drinks category at baseline. Although European regulations did not authorise the use of steviol glycosides until December 2011, France permitted the use of rebaudioside A in water-based flavoured drinks, energyreduced or with no added sugar, from August 2009 (Gouvernement français 2009). This explains the presence of steviol glycosides in these three products.

In particular, in the Soft drinks category, where the use of intense sweeteners fell significantly (-12.6 points), four sweeteners were used significantly less in the products at follow-up. These were acesulfame K (-17.1 points), aspartame (-19.3 points), saccharins (-3.5 points) and cyclamates (-2.1 points). Conversely, and in line with the observed change for all products combined, the use of two intense sweeteners increased significantly: sucralose (+3.2 points; this was the third most commonly used sweetener after acesulfame K and aspartame) and steviol glycosides (+3.9 points).

The Fresh dairy products and desserts category also saw a significant reduction in the use of intense sweeteners (-4.4 points), which can be explained by the significant decline in the use of acesulfame K (-4.5 points) and aspartame (-6.5 points). There were no significant increases to offset these decreases.

For both Soft drinks and Fresh dairy products and desserts, acesulfame K and aspartame were the most commonly used sweeteners at baseline, and also saw large significant reductions (ranging from - 4.5 points to -19.3 points).

In the Syrups category, a significant reduction was observed for cyclamates (-3.3 points), although this did not have a significant impact at category level. Downward changes were observed for the other intense sweeteners, with the exception of steviol glycosides (mainly only used following European authorisation in December 2011).

Table 16: Change in the frequency of presence by intense sweetener and by relevant food category for which updated data were available (Soft drinks, Fresh dairy products and desserts, Syrups; sorted in descending order of the proportion of products each containing intense sweeteners, at baseline for each category of interest).

Intense sweetener found in the products, by product category of interest ($n=$ number of products with the intense sweetener considered)		Change in the proportion of products containing at least the intense sweetener considered, by product category of interest ($\mathbf{3}$ out of the $\mathbf{2 7}$ monitored for changes)		
		Baseline	Follow-up	Change in the proportions (point)
Soft drinks (Baseline: 891 products with an ingredient list; Follow-up: 2343 products with an ingredient list)	At least one intense sweetener (Baseline: $\mathbf{n = 2 6 7}$; Follow-up: $\mathbf{n = 4 0 7}$)	30\%	17\%	-12.6***
	Acesulfame K (Baseline: n=249; Follow-up: n=254)	28\%	11\%	-17.1***
	Aspartame (Baseline: $\mathrm{n}=207$; Follow-up: $\mathrm{n}=91$)	23\%	4\%	-19.3***
	Sucralose (Baseline: n=54; Follow-up: n=217)	6\%	9\%	+3.2**
	Saccharins (Baseline: n=37; Follow-up: n=15)	4\%	1\%	-3.5***
	Cyclamates (Baseline: n=24; Follow-up: n=14)	3\%	1\%	-2.1 ***
	Steviol glycosides (Baseline: n=3; Follow-up: n=99)	0,3\%	4\%	+3.9***
	Neohesperidin DC (Baseline: n=0; Follow-up: n=2)	0\%	0,1\%	+0.1
Fresh dairy products and desserts	At least one intense sweetener (Baseline: $\mathbf{n = 1 3 4}$; Follow-up: $\mathbf{n = 1 2 3}$)	8\%	4\%	-4.4***
	Acesulfame K (Baseline: $\mathrm{n}=133$; Follow-up: $\mathrm{n}=116$)	8\%	4\%	-4.5***
	Aspartame (Baseline: n=124; Follow-up: n=38)	8\%	1\%	-6.5***
(Baseline: 1613 products with an ingredient list; Follow-up: 3115 products with an ingredient list)	Sucralose (Baseline: $\mathrm{n}=27$; Follow-up: $\mathrm{n}=73$)	2\%	2\%	+0.7
	Cyclamates (Baseline: n=6; Follow-up: n=8)	0,4\%	0,3\%	-0.1
	Neohesperidin DC (Baseline: n=6; Follow-up: n=8)	0,4\%	0,3\%	-0.1
	Steviol glycosides (Baseline: n=0; Follow-up: n=7)	0\%	0,2\%	+0.2
	Neotame (Baseline: n=0; Follow-up: n=1)	0\%	0,03\%	+0.03
Syrups	At least one intense sweetener (Baseline: $\mathbf{n = 3 6}$; Follow-up: $\mathbf{n = 7 3}$)	11\%	11\%	-0.7
	Acesulfame K (Baseline: $\mathrm{n}=33$; Follow-up: $\mathrm{n}=63$)	10\%	9\%	-1.2
(Baseline: 316 products with an ingredient list; Follow-up: 681 products with an ingredient list)	Sucralose (Baseline: $\mathrm{n}=33$; Follow-up: $\mathrm{n}=62$)	10\%	9\%	-1.3
	Cyclamates (Baseline: n=18; Follow-up: n=16)	6\%	2\%	-3.3**
	Aspartame (Baseline: n=6; Follow-up: n=11)	2\%	2\%	-0.3
	Steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=17$)	0\%	2\%	+2.5

Purple cells: significant decrease in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up (* if $p<0.05$;
${ }^{* *}$ if $\mathrm{p}<0.01$; $^{* * *}$ if $\mathrm{p}<0.001$)
Orange cells: significant increase in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up (* if $\mathrm{p}<0.05$; ${ }^{* *}$ if $\mathrm{p}<0.01$; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
Statistical test performed: chi-square test

4.6.1.3 By type of brand

Only four of the eight intense sweeteners found in all products combined were used by every type of brand: acesulfame K, aspartame, steviol glycosides and saccharins (Table 17).

Not including the specialised retailer brands ${ }^{18}$, for which no significant change was observed, all the types of brands included both intense sweeteners whose use fell significantly and others whose use increased significantly (Table 17).

Only retailer brands saw a significant reduction in the use of intense sweeteners at type of brand level. This was due to a significant fall in the use of four intense sweeteners: acesulfame K (-1.2 points), aspartame (-1.7 points), saccharins (-0.1 points) and cyclamates (-0.1 points). Conversely, sucralose saw a significant increase (+0.3 points). Moreover, for the three other types of brands where significant changes were observed for certain intense sweeteners, sucralose increased significantly (ranging from +0.4 points to +2.2 points), an increase partly offset by the significant reduction observed for aspartame (ranging from -1.0 point to -1.9 points). Note that for national brands and hard discount products, these changes were accompanied by a significant reduction in the use of acesulfame $\mathrm{K}(-1.0$ point and -0.6 points, respectively). National brands also saw a significant increase for steviol glycosides (+0.6 points).

[^13]Table 17: Change in the frequency of presence by intense sweetener and by type of brand (27 food categories monitored for changes)

Intense sweetener found in the products, by type of brand ($n=$ number of products with the intense sweetener considered)		Change in the proportion of products containing at least the intense sweetener considered, by type of brand (27 product categories monitored for changes)		
		Baseline	Follow-up	Change in the proportions (point)
National brands	At least one intense sweetener (Baseline: $\mathbf{n = 1 7 5}$; Follow-up: $\mathbf{n = 3 8 3}$)	3\%	3\%	-0.1
	Acesulfame K (Baseline: n=159; Follow-up: n=247)	3\%	2\%	-1.0***
	Aspartame (Baseline: $\mathrm{n}=114$; Follow-up: $\mathrm{n}=83$)	2\%	1\%	-1.5***
	Sucralose (Baseline: $\mathrm{n}=61$; Follow-up: $\mathrm{n}=194$)	1\%	2\%	+0.5*
	Cyclamates (Baseline: n=19; Follow-up: n=25)	0,4\%	0,2\%	-0.2
	Saccharins (Baseline: n=8; Follow-up: n=11)	0,2\%	0,1\%	-0.1
	Neohesperidin DC (Baseline: n=6; Follow-up: n=10)	0,1\%	0,1\%	-0.03
	Steviol glycosides (Baseline: n=4; Follow-up: n=84)	0,1\%	1\%	+0.6***
Retailer brands	At least one intense sweetener (Baseline: $\mathbf{n}=208$; Follow-up: $\mathbf{n}=193$)	2\%	1\%	-1.2***
	Acesulfame K (Baseline: $\mathrm{n}=184$; Follow-up: $\mathrm{n}=139$)	2\%	1\%	-1.2***
	Aspartame (Baseline: $\mathrm{n}=162$; Follow-up: $\mathrm{n}=38$)	2\%	0,3\%	-1.7***
	Sucralose (Baseline: $\mathrm{n}=54$; Follow-up: $\mathrm{n}=141$)	1\%	1\%	+0.3*
	Saccharins (Baseline: $\mathrm{n}=13$; Follow-up: $\mathrm{n}=1$)	0,2\%	0,01\%	-0.1***
	Cyclamates (Baseline: $\mathrm{n}=11$; Follow-up: $\mathrm{n}=3$)	0,1\%	0,02\%	-0.1***
	Steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=36$)	0\%	0,2\%	+0.2
	Neotame (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,01\%	+0.01
Entry-level retailer brands	At least one intense sweetener (Baseline: $\mathrm{n}=42$; Follow-up: $\mathrm{n}=47$)	4\%	4\%	+0.4
	Acesulfame K (Baseline: $\mathrm{n}=36$; Follow-up: $\mathrm{n}=37$)	3\%	3\%	+0.1
	Aspartame (Baseline: n=36; Follow-up: n=15)	3\%	1\%	-1.9**
	Saccharins (Baseline: n=21; Follow-up: n=11)	2\%	1\%	-0.9
	Cyclamates (Baseline: $\mathrm{n}=20$; Follow-up: $\mathrm{n}=10$)	2\%	1\%	-0.9
	Sucralose (Baseline: n=1; Follow-up: n=26)	0,1\%	2\%	+2.2***
	Steviol glycosides (Baseline: n=0; Follow-up: n=1)	0\%	0,1\%	+0.1
Hard discount	At least one intense sweetener (Baseline: $\mathbf{n = 6 1}$; Follow-up: $\mathbf{n = 6 0}$)	2\%	1\%	-0,6
	Acesulfame K (Baseline: $\mathrm{n}=47$; Follow-up: $\mathrm{n}=39$)	1\%	1\%	-0.6*
	Aspartame (Baseline: n=46; Follow-up: n=18)	1\%	0,4\%	-1.0***
	Saccharins (Baseline: $\mathrm{n}=10$; Follow-up: $\mathrm{n}=6$)	0,3\%	0,1\%	-0.2
	Sucralose (Baseline: $\mathrm{n}=9$; Follow-up: $\mathrm{n}=29$)	0,3\%	1\%	+0.4*
	Cyclamates (Baseline: n=8; Follow-up: n=9)	0,3\%	0,2\%	-0.05
	Steviol glycosides (Baseline: n=0; Follow-up: n=12)	0\%	0,3\%	+0.3
Specialised retailer brands ${ }^{1}$	At least one intense sweetener (Baseline: n=4; Follow-up: n=4)	0,2\%	0,2\%	-0.03
	Acesulfame K (Baseline: n=2; Follow-up: $\mathrm{n}=1$)	0,1\%	0,05\%	-0.1
	Aspartame (Baseline: n=2; Follow-up: n=1)	0,1\%	0,05\%	-0.1
	Steviol glycosides (Baseline: n=1; Follow-up: n=3)	0,1\%	0,1\%	+0.1
	Saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,1\%	0\%	-0.1
Purple cells: significant decrease in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up ${ }^{*}$ if $\mathrm{p}<0.05$; ${ }^{* *}$ if $\mathrm{p}<0.01$; *** if $\mathrm{p}<0.001$) Orange cells: significant increase in the frequency of presence of the intense sweetener considered in the products between baseline and follow-up (* if p<0.05; ${ }^{* *}$ if $\mathrm{p}<0.01$; *** if $\mathrm{p}<0.001$) Statistical test performed: chi-square test ${ }^{1}$ As specialised retailer brands were present in only six product categories out of the 27 studied (5 product categories for which baseline and follow-up data were available: Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difficult to compare them to the other types of brands.				

4.6.2 Change in combinations of intense sweeteners

4.6.2.1 All products combined

With the exception of steviol glycosides, which were mainly used alone, the other intense sweeteners tended to be used in combination (Table 18).

Not all combinations of intense sweeteners were found, since only 23 were present in at least one of the products taken into account in this change study, including combinations comprising only one sweetener. Of these 23 combinations, the vast majority combined two or three intense sweeteners and only one combined four (acesulfame K/aspartame/cyclamates/saccharins). In addition, seven combinations of intense sweeteners appeared at follow-up, in a small number of products (from 1 to 12 products), while none of the combinations disappeared between baseline and follow-up.

The use of intense sweeteners fell significantly between baseline and follow-up (-0.5 points), which can be explained by the significant reduction observed for six combinations, in particular the one most commonly found in products at baseline (the acesulfame K/aspartame combination, which fell significantly: -1.0 points). These reductions concerned combinations that were among the most commonly used at baseline (combinations found in more than 0.5% of products) and combinations combining several sweeteners (from 2 to 4). In addition, the sweeteners found in these combinations mainly corresponded to those that decreased significantly on an individual level: acesulfame K, aspartame, saccharins and cyclamates (Section 4.6.1.1).

Conversely, three combinations of intense sweeteners saw a significant increase in their use (ranging from $\mathbf{+ 0 . 1}$ points to $\mathbf{+ 0 . 5}$ points). Two of these related to the use of a single sweetener (steviol glycosides, sucralose), while the third involved two intense sweeteners (acesulfame $\mathrm{K} /$ sucralose). The sweeteners found in these combinations were therefore also those for which there was a significant increase at the individual level (Section 4.6.1.1).

Table 18: Change in the frequency of presence by combination of intense sweeteners, all products combined (27 food categories monitored for changes; sorted in descending order of the proportion of products with the combination considered, at baseline).

Intense sweetener or combination of intense sweeteners found in the products ($n=$ number of products with the intense sweetener or combination of intense sweeteners considered)	Change in the proportion of products containing the intense sweetener or combination of intense sweeteners considered, all product categories combined (27 product categories monitored for changes)		
	Baseline	Follow-up	Change in the proportions (point)
At least one intense sweetener (Baseline: $\mathrm{n}=490$; Follow-up: $\mathrm{n}=687$)	2,5\%	2\%	-0.5***
acesulfame K / aspartame (Baseline: $\mathrm{n}=272$; Follow-up: $\mathrm{n}=116$)	1\%	0,3\%	-1.0 ***
acesulfame K / sucralose (Baseline: $\mathrm{n}=58$; Follow-up: $\mathrm{n}=270$)	0,3\%	1\%	+0.5***
acesulfame K / aspartame / sucralose (Baseline: $\mathrm{n}=28$; Follow-up: $\mathrm{n}=12$)	0,1\%	0,03\%	$-0.1^{* * *}$
sucralose (Baseline: $\mathrm{n}=21$; Follow-up: $\mathrm{n}=79$)	0,1\%	0,2\%	+0.1**
acesulfame K / aspartame / cyclamates / saccharins (Baseline: $\mathrm{n}=21$; Follow-up: $\mathrm{n}=9$)	0,1\%	0,03\%	$-0.1^{* * *}$
acesulfame K / cyclamates / sucralose (Baseline: $\mathrm{n}=18$; Follow-up: $\mathrm{n}=6$)	0,1\%	0,02\%	$-0.1^{* * *}$
aspartame (Baseline: $\mathrm{n}=18$; Follow-up: $\mathrm{n}=6$)	0,1\%	0,02\%	$-0.1^{* * *}$
acesulfame K / aspartame / saccharins (Baseline: $\mathrm{n}=13$; Follow-up: $\mathrm{n}=3$)	0,1\%	0,01\%	$-0.1^{* * *}$
cyclamates / saccharins (Baseline: $\mathrm{n}=8$; Follow-up: $\mathrm{n}=8$)	0,04\%	0,02\%	-0.02
acesulfame K (Baseline: $n=7$; Follow-up: $n=8$)	0,04\%	0,02\%	-0.01
acesulfame K / cyclamates / neohesperidin DC (Baseline: $\mathrm{n}=6$; Follow-up: $\mathrm{n}=8$)	0,03\%	0,02\%	-0.01
saccharins (Baseline: $\mathrm{n}=6$; Follow-up: $\mathrm{n}=5$)	0,03\%	0,01\%	-0.02
steviol glycosides (Baseline: $\mathrm{n}=5$; Follow-up: $\mathrm{n}=112$)	0,03\%	0,3\%	+0.3***
acesulfame K / aspartame / cyclamates (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=6$)	0,02\%	0,02\%	-0.003
aspartame / saccharins (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=1$)	0,02\%	0,003\%	-0.02
acesulfame K / cyclamates / saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=2$)	0,01\%	0,01\%	+0.001
sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=12)	0\%	0,03\%	+0.03
acesulfame K / sucralose / steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=10$)	0\%	0,03\%	+0.03
acesulfame K / cyclamates (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=8$)	0\%	0,02\%	+0.02
acesulfame K / aspartame / neohesperidin DC (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=2$)	0\%	0,01\%	+0.01
acesulfame K / steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=2$)	0\%	0,01\%	+0.01
acesulfame K / saccharins (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,003\%	+0.003
sucralose / neotame (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,003\%	+0.003

[^14]
4.6.2.2 By relevant product category

As indicated in Section 4.6.1.2, only the Soft drinks, Fresh dairy products and desserts and Syrups categories were considered.

There were significant decreases in use (ranging from - $\mathbf{1 . 4}$ points to $\mathbf{- 1 5 . 4}$ points), although significant increases were also observed (ranging from $\boldsymbol{+ 1 . 1}$ points to +3.8 points) (Table 19). In the Soft drinks category, for example, the decrease in the use of intense sweeteners observed at category level (-12.6 points) was driven by two of the most commonly used combinations at baseline: acesulfame K/aspartame (-15.4 points) and acesulfame K/aspartame/cyclamates/saccharins (-1.8 points). Conversely, three combinations saw a significant increase in use: steviol glycosides (+3.8 points), acesulfame K/sucralose (+2.1 points) and sucralose (+1.1 points). Regarding the Fresh dairy products and desserts category, the significant decrease observed at category level (-4.4 points) was due to the significantly lower use of the two most commonly used combinations at baseline (-5.0 points for acesulfame $\mathrm{K} /$ aspartame and -1.4 points for acesulfame K/aspartame/sucralose), while a significant increase was observed for the acesulfame $\mathrm{K} /$ sucralose combination (+1.8 points), which became the most commonly used combination at follow-up. Lastly, the Syrups category saw only one significant change, which was a decrease for the most commonly used combination at baseline (-5.0 points for acesulfame $\mathrm{K} /$ cyclamates/sucralose), explaining the downward change in the use of intense sweeteners observed for this category as a whole.

Table 19: Change in the frequency of presence by combination of intense sweeteners and by relevant food category for which updated data were available (Soft drinks, Fresh dairy products and desserts, Syrups; sorted in descending order of the proportion of products with the combination considered, at baseline for each relevant category).

Intense sweetener or combination of intense sweeteners found in products, by product category of interest sweeteners considered)		Change in the proportion of products containing the intense sweetener or combination of intense sweeteners considered, by product category of interest (3 out of the $\mathbf{2 7}$ monitored for changes)		
		Baseline	Follow-up	Change in the proportions (point)
Soft drinks	At least one intense sweetener (Baseline: $\mathbf{n = 2 6 7}$; Follow-up: $\mathbf{n = 4 0 7}$)	30\%	17\%	-12.6***
	acesulfame K / aspartame (Baseline: n=164; Follow-up: n=71)	18\%	3\%	-15.4***
	acesulfame K / sucralose (Baseline: $\mathrm{n}=42$; Follow-up: $\mathrm{n}=159$)	5\%	7\%	+2.1*
	acesulfame K / aspartame / cyclamates / saccharins (Baseline: $\mathrm{n}=19$; Follow-up: $\mathrm{n}=8$)	2\%	0,3\%	$-1.8{ }^{* * *}$
	acesulfame K / aspartame / saccharins (Baseline: n=13; Follow-up: n=3)	1\%	0,1\%	-1.3
	sucralose (Baseline: $\mathrm{n}=10$; Follow-up: $\mathrm{n}=52$)	1\%	2\%	+1.1*
	acesulfame K / aspartame / cyclamates (Baseline: n=4; Follow-up: n=3)	0,4\%	0,1\%	-0.3
	acesulfame K (Baseline: n=4; Follow-up: n=2)	0,4\%	0,1\%	-0.4
	aspartame / saccharins (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=1$)	0,4\%	0,04\%	-0.4
	steviol glycosides (Baseline: $\mathrm{n}=3$; Follow-up: $\mathrm{n}=97$)	0,3\%	4\%	+3.8***
	acesulfame K / aspartame/ sucralose (Baseline: $\mathrm{n}=2$; Follow-up: $\mathrm{n}=3$)	0,2\%	0,1\%	-0.1
	acesulfame K / cyclamates / saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=2$)	0,1\%	0,1\%	-0.03
	aspartame (Baseline: $n=1$; Follow-up: $n=0$)	0,1\%	0\%	-0.1
	acesulfame K / aspartame / neohesperidin DC (Baseline: n=0; Follow-up: n=2)	0\%	0,1\%	+0.1
	sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=2)	0\%	0,1\%	+0.1
	acesulfame K / cyclamates / sucralose (Baseline: n=0; Follow-up: n=1)	0\%	0,04\%	+0.04
	saccharins (Baseline: $n=0$; Follow-up: $n=1$)	0\%	0,04\%	+0.04
Fresh dairy products and desserts	At least one intense sweetener (Baseline: $\mathbf{n}=134$; Follow-up: $\mathbf{n = 1 2 3}$)	8\%	4\%	-4.4***
	acesulfame K / aspartame (Baseline: n=100; Follow-up: n=37)	6\%	1\%	-5.0***
	acesulfame K / aspartame/ sucralose (Baseline: $\mathrm{n}=23$; Follow-up: $\mathrm{n}=1$)	1\%	0,03\%	-1.4***
	acesulfame K / cyclamates / neohesperidin DC (Baseline: $\mathrm{n}=6$; Follow-up: $\mathrm{n}=8$)	0,4\%	0,3\%	-0.1
	acesulfame K / sucralose (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=64$)	0,2\%	2\%	+1.8***
	aspartame (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,1\%	0\%	-0.1
	sucralose (Baseline: $n=0$; Follow-up: $n=4$)	0\%	0,1\%	+0.1
	acesulfame K / sucralose / steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=3$)	0\%	0,1\%	+0.1
	acesulfame K / steviol glycosides (Baseline: n=0; Follow-up: n=2)	0\%	0,1\%	+0.1
	steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=2$)	0\%	0,1\%	+0.1
	acesulfame K (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,03\%	+0.03
	sucralose / neotame (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,03\%	+0.03
Syrups	At least one intense sweetener (Baseline: $\mathbf{n = 3 6}$; Follow-up: $\mathbf{n = 7 3}$)	11\%	11\%	-0.7
	acesulfame K / cyclamates / sucralose (Baseline: $\mathrm{n}=18$; Follow-up: $\mathrm{n}=5$)	6\%	1\%	-5.0 ***
	acesulfame K / sucralose (Baseline: $\mathrm{n}=11$; Follow-up: $\mathrm{n}=32$)	3\%	5\%	+1.2
	acesulfame K / aspartame/ sucralose (Baseline: $n=3$; Follow-up: $n=8$)	1\%	1\%	+0.2
	aspartame (Baseline: $\mathrm{n}=2$; Follow-up: $\mathrm{n}=0$)	1\%	0\%	-0.6
	acesulfame K / aspartame (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,3\%	0\%	-0.3
	sucralose (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,3\%	0\%	-0.3
	sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=10)	0\%	1\%	+1.5
	acesulfame K / cyclamates (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=8$)	0\%	1\%	+1.2
	acesulfame K / sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=7)	0\%	1\%	+1
	acesulfame K / aspartame / cyclamates (Baseline: n=0; Follow-up: n=3)	0\%	0,4\%	+0.4

(Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=3$)
and follow-up (${ }^{*}$ if $\mathrm{p}<0.05$; ${ }^{* *}$ if $\mathrm{p}<0.01$; *** if $\mathrm{p}<0.001$)
and follow-up ${ }^{*}$ if $p<0.05$; ${ }^{* *}$ if $p<0.01 ; * *$ if $p<0.001$
Orange cells: significant increase in the frequency of pres
Ond follow-up $\left({ }^{*}\right.$ if $p<0.05 ; * *$ if $p<0.01 ;{ }^{* * *}$ if $\left.p<0.001\right)$
and
Statistical test performed: chi-square test

4.6.2.3 By type of brand

With the exception of specialised retailer brands ${ }^{19}$ for which no significant change was observed, all the other types of brands saw a significant change for at least two combinations of intense sweeteners, most often a downward change (ranging from -0.1 points to - $\mathbf{1 . 3}$ points), while significant increases were also observed (ranging from +0.3 points to $\mathbf{+ 0 . 7}$ points) (Table 20). Use of the acesulfame K/aspartame combination fell significantly in every type of brand (ranging from -0.8 points to -1.3 points; with the exception of specialised retailer brands). Similarly, use of the acesulfame K/aspartame/sucralose combination fell significantly for national brands (-0.3 points) and retailer brands (-0.1 points). Conversely, the acesulfame $\mathrm{K} /$ sucralose combination increased for national brands $(+0.7$ points), retailer brands (+0.3 points) and hard discount products (+0.3 points).

As a reminder, only retailer brands saw a significant reduction in the use of intense sweeteners (-1.2 points) at type of brand level. For national brands, five significant changes were observed, both upwards and downwards, which partly explains the absence of any significant change at type of brand level. Hard discount products saw two significant changes which, as for the previous types of brands, concerned the combinations most often used at baseline: a significant decrease for acesulfame $\mathrm{K} /$ aspartame (-0.8 points) and a significant increase for acesulfame $\mathrm{K} /$ sucralose (+0.3 points). Lastly, for entry-level retailer brands, two significant downward changes were observed (-1.0 point for acesulfame $\mathrm{K} /$ aspartame and -1.0 point for acesulfame $\mathrm{K} /$ aspartame/cyclamates/saccharins).

[^15]Table 20: Change in the frequency of presence by combination of intense sweeteners and by type of brand (among the 27 food categories monitored for changes; sorted in descending order of the proportion of products with the combination considered, at baseline for each type of brand).

Intense sweetener or combination of intense sweeteners found in the products, by type of brand ($n=n u m b e r$ of products with the intense sweetener or combination of intense sweeteners considered)		Change in the proportion of products containing the intense sweetener or combination of intense sweeteners considered, by type of brand (27 product categories monitored for changes)		
		Baseline	Follow-up	Change in the proportions (point)
National brands	At least one intense sweetener (Baseline: $\mathbf{n}=\mathbf{1 7 5}$; Follow-up: $\mathbf{n = 3 8 3}$)	3\%	3\%	-0.1
	acesulfame K / aspartame (Baseline: $\mathrm{n}=89$; Follow-up: $\mathrm{n}=69$)	2\%	1\%	-1***
	acesulfame K / sucralose (Baseline: n=26; Follow-up: n=136)	1\%	1\%	+1***
	acesulfame K / aspartame / sucralose (Baseline: $\mathrm{n}=16$; Follow-up: $\mathrm{n}=3$)	0,3\%	0,03\%	-0.3***
	acesulfame K / cyclamates / sucralose (Baseline: $\mathrm{n}=11$; Follow-up: $\mathrm{n}=3$)	0,2\%	0,03\%	-0.2
	sucralose (Baseline: n=8; Follow-up: n=49)	0,2\%	0,4\%	+0.3**
	acesulfame K / cyclamates / neohesperidin DC (Baseline: $\mathrm{n}=6$; Follow-up: $\mathrm{n}=8$)	0,1\%	0,1\%	-0.05
	acesulfame K / aspartame / saccharins (Baseline: n=5; Follow-up: n=3)	0,1\%	0,03\%	-0.1
	steviol glycosides (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=81$)	0,1\%	1\%	+1***
	acesulfame K (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=6$)	0,1\%	0,1\%	-0.03
	saccharins (Baseline: n=2; Follow-up: n=5)	0,04\%	0,04\%	+0.004
	acesulfame K / aspartame / cyclamates (Baseline: $\mathrm{n}=2$; Follow-up: $\mathrm{n}=3$)	0,04\%	0,03\%	-0.01
	aspartame (Baseline: n=1; Follow-up: n=1)	0,02\%	0,01\%	-0.01
	aspartame / saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,02\%	0\%	-0.02
	acesulfame K / cyclamates (Baseline: n=0; Follow-up: n=8)	0\%	0,1\%	+0.1
	acesulfame K / sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=3)	0\%	0,03\%	+0.03
	acesulfame K / aspartame / cyclamates / saccharins (Baseline: n=0; Follow-up: n=2)	0\%	0,02\%	+0.02
	acesulfame K / aspartame / neohesperidin DC (Baseline: n=0; Follow-up: n=2)	0\%	0,02\%	+0.02
	acesulfame K / cyclamates / saccharins (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,01\%	+0.01
Retailer brands	At least one intense sweetener (Baseline: $\mathbf{n = 2 0 8}$; Follow-up: $\mathbf{n = 1 9 3)}$	2\%	1\%	-1***
	acesulfame K / aspartame (Baseline: n=127; Follow-up: n=26)	1\%	0,2\%	-1***
	acesulfame K / sucralose (Baseline: n=27; Follow-up: n=92)	0,3\%	1\%	+0.3**
	aspartame (Baseline: n=12; Follow-up: n=3)	0,1\%	0,02\%	-0.1***
	acesulfame K / aspartame / sucralose (Baseline: n=11; Follow-up: n=8)	0,1\%	0,1\%	-0.1*
	sucralose (Baseline: n=10; Follow-up: n=23)	0,1\%	0,2\%	+0.04
	acesulfame $K /$ aspartame / saccharins (Baseline: n=7; Follow-up: n=0)	0,1\%	0\%	-0.1
	acesulfame K / cyclamates / sucralose (Baseline: n=6; Follow-up: n=2)	0,1\%	0,01\%	-0.1
	acesulfame K / aspartame / cyclamates / saccharins (Baseline: n=4; Follow-up: n=1)	0,05\%	0,01\%	-0.04
	saccharins (Baseline: $\mathrm{n}=2$; Follow-up: $\mathrm{n}=0$)	0,02\%	0\%	-0.02
	acesulfame K (Baseline: n=1; Follow-up: n=1)	0,01\%	0,01\%	-0.01
	acesulfame K / aspartame / cyclamates (Baseline: n=1; Follow-up: n=0)	0,01\%	0\%	-0.01
	steviol glycosides (Baseline: n=0; Follow-up: n=19)	0\%	0,1\%	+0.1
	sucralose / steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=8$)	0\%	0,1\%	+0.1
	acesulfame K / sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=7)	0\%	0,05\%	+0.05
	acesulfame K / steviol glycosides (Baseline: n=0; Follow-up: n=2)	0\%	0,01\%	+0.01
	sucralose / neotame (Baseline: n=0; Follow-up: n=1)	0\%	0,01\%	+0.01

Intense sweetener or combination of intense sweeteners found in the products, by type of brand ($n=$ number of products with the intense sweetener or combination of intense sweeteners considered)		Change in the proportion of products containing the intense sweetener or combination of intense sweeteners considered, by type of brand (27 product categories monitored for changes)		
		Baseline	Follow-up	Change in the proportions (point)
Entry-level retailer brands	At least one intense sweetener (Baseline: n=42; Follow-up: n=47)	4\%	4\%	+0.4
	acesulfame K / aspartame (Baseline: n=20; Follow-up: n=9)	2\%	1\%	-1*
	acesulfame K / aspartame / cyclamates / saccharins (Baseline: $\mathrm{n}=15$; Follow-up: $\mathrm{n}=4$)	1\%	0,4\%	-1*
	cyclamates / saccharins (Baseline: n=4; Follow-up: n=5)	0,4\%	0,4\%	+0.1
	sucralose (Baseline: n=1; Follow-up: n=3)	0,1\%	0,3\%	+0.2
	acesulfame K / cyclamates / saccharins (Baseline: n=1; Follow-up: n=1)	0,1\%	0,1\%	-0.0002
	aspartame / saccharins (Baseline: n=1; Follow-up: n=1)	0,1\%	0,1\%	-0.0002
	acesulfame K / sucralose (Baseline: n=0; Follow-up: n=22)	0\%	2\%	+2
	acesulfame K / aspartame / sucralose (Baseline: n=0; Follow-up: n=1)	0\%	0,1\%	+0.1
	steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=1$)	0\%	0,1\%	+0.1
Hard discount	At least one intense sweetener (Baseline: $\mathbf{n = 6 1}$; Follow-up: $\mathbf{n = 6 0}$)	2\%	1\%	-1
	acesulfame K / aspartame (Baseline: $\mathrm{n}=34$; Follow-up: $\mathrm{n}=11$)	1\%	0,3\%	-1***
	acesulfame K / sucralose (Baseline: n=5; Follow-up: n=20)	0,2\%	0,5\%	+0.3*
	aspartame (Baseline: $\mathrm{n}=5$; Follow-up: $\mathrm{n}=2$)	0,2\%	0,05\%	-0.1
	cyclamates / saccharins (Baseline: n=4; Follow-up: n=3)	0,1\%	0,1\%	-0.1
	sucralose (Baseline: n=2; Follow-up: $\mathrm{n}=4$)	0,1\%	0,1\%	+0.03
	acesulfame K / aspartame / cyclamates / saccharins (Baseline: n=2; Follow-up: n=2)	0,1\%	0,05\%	-0.02
	acesulfame K (Baseline: n=2; Follow-up: n=1)	0,1\%	0,02\%	-0.04
	aspartame / saccharins (Baseline: $\mathrm{n}=2$; Follow-up: $\mathrm{n}=0$)	0,1\%	0\%	-0.1
	acesulfame K / aspartame / cyclamates (Baseline: n=1; Follow-up: n=3)	0,03\%	0,1\%	+0.04
	acesulfame K / cyclamates / sucralose (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=1$)	0,03\%	0,02\%	-0.01
	acesulfame K / aspartame / saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,03\%	0\%	-0.03
	acesulfame K / aspartame / sucralose (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,03\%	0\%	-0.03
	saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,03\%	0\%	-0.03
	steviol glycosides (Baseline: $\mathrm{n}=0$; Follow-up: $\mathrm{n}=8$)	0\%	0,2\%	+0.2
	sucralose / steviol glycosides (Baseline: n=0; Follow-up: n=4)	0\%	0,1\%	+0.1
	acesulfame $\mathrm{K} /$ saccharins (Baseline: n=0; Follow-up: n=1)	0\%	0,02\%	+0.02
Specialised retailer brands ${ }^{1}$	At least one intense sweetener (Baseline: $\mathrm{n}=4$; Follow-up: $\mathrm{n}=4$)	0,2\%	0,2\%	-0.03
	acesulfame K / aspartame (Baseline: n=2; Follow-up: n=1)	0,1\%	0,05\%	-0.1
	steviol glycosides (Baseline: n=1; Follow-up: n=3)	0,1\%	0,1\%	+0.1
	saccharins (Baseline: $\mathrm{n}=1$; Follow-up: $\mathrm{n}=0$)	0,1\%	0\%	-0.1

Purple cells: significant decrease in the frequency of presence of the intense sweetener or combination of intense sweeteners considered in the products between baseline
and follow-up (${ }^{*}$ if $\mathrm{p}<0.05 ; *$ if $\mathrm{p}<0.01$; *** if $\mathrm{p}<0.001$)
Orange cells: significant increase in the frequency of presence of the intense sweetener or combination of intense sweeteners considered in the products between baseline and follow-up ($*$ if $p<0.05$; ** if $p<0.01$; *** if $p<0.001$)
Statistical test performed: chi-square test
${ }^{1}$ As specialised retailer brands were present in only six product categories out of the 27 studied (5 product categories for which baseline and follow-up data were available: Ice creams and sorbets, Ready-to-eat frozen meals, Processed potato products, Frozen snacking products, Frozen pastries and desserts; 1 product category for which only follow-up data were available: Soups and broths), it is difficult to compare them to the other types of brands.

4.7 Conclusion on changes in the use of sweetening ingredients or ingredients conveying sweetness

Among all the products studied (27 food categories), the proportion of those containing at least one sweetening ingredient or ingredient conveying sweetness fell significantly, by 5.5 points, between the two monitoring periods (over intervals ranging from $\mathbf{3}$ to 10 years). It should be noted, however, that this proportion remained very high, since 81% ($\mathrm{n}=28,163$) of the products at follow-up contained at least one sweetening ingredient or ingredient conveying sweetness ${ }^{20}$.

With the exception of Fruit juices and concentrates and Honey, use of the other nine classes of sweetening ingredients or ingredients conveying sweetness appears to have declined significantly between baseline and follow-up. Some classes even saw large falls, in particular Syrups (-7.9 points), Other sugars (-7.8 points) and Lactose (-7.6 points). Note that the use of ingredients in the Sucrose class also fell significantly (-1.9 points), but it was still the most commonly used class at both baseline and follow-up (found in 64% and 62% of products, respectively). Conversely, Fruit juices and concentrates was the only ingredient class whose use increased significantly (+2.4 points).

This significant decline observed in all products combined was found for every type of brand (with significant reductions ranging from -3.7 points for hard discount products to -6.4 points for national brands) and for almost half of the product categories, with 13 out of 27 seeing their proportions fall significantly (ranging from -2.2 points to -23.9 points). In particular, the biggest falls were in categories with a more savoury connotation (mainly -23.9 points for Ready-to-eat canned meals, -15.1 points for Fresh delicatessen products and -12.8 points for Ready-to-eat frozen meals).

These downward changes can be partly explained by reformulations of pre-existing products. Although no significant change was observed for all paired products combined, four classes of sweetening ingredients or ingredients conveying sweetness saw significant declines in use, even if this was less marked than for the offering as a whole $(-3.9$ points versus -7.9 points for Syrups; -3.6 points versus -7.6 points for Lactose; -2.7 points versus -7.8 points for Other sugars; -1.3 points versus -2.1 points for Caramel). In addition to the reformulations observed, a change in the offering also partly explains the decline in the use of sweetening ingredients or ingredients conveying sweetness. New products use fewer of these ingredients than older products that have been withdrawn from the market.

Three food categories saw a significant increase in the presence of sweetening ingredients or ingredients conveying sweetness: Margarines (+9.7 points), Processed potato products (+6.6 points driven by use of the Other sugars class) and Cold sauces (+5.3 points with increased use of the Sucrose class).

The study of combinations of classes of sweetening ingredients or ingredients conveying sweetness showed that the simultaneous use of different classes was more limited. There

[^16]was a significant fall in the simultaneous use of two, three, four, five and six classes (ranging from -0.3 points to -3.7 points), to the benefit of the proportion of products with no ingredients studied (+5.5 points) or with a single class of sweetening ingredients or ingredients conveying sweetness (+3.5 points). In addition, most combinations of classes of sweetening ingredients or ingredients conveying sweetness saw a significant decline in use (ranging from -0.2 points to -3.3 points). Only three combinations saw their use increase significantly: Sucrose alone (+4.2 points), Fruit juices and concentrates alone (+1.3 points) and the combination Sucrose/Fruit juices and concentrates (+3.2 points).

Regarding the change in the use of intense sweeteners, this use fell significantly between baseline and follow-up, for all products combined ($\mathbf{- 0 . 5}$ points). Note that the use of sweeteners was low at both baseline (2.5% of products) and at follow-up (2\%). Of the eight intense sweeteners found at baseline and/or follow-up of the 11 studied, four saw a significant decline in use: acesulfame \mathbf{K} (-0.8 points), aspartame (-1.4 points), cyclamates (-0.2 points) and saccharins (-0.2 points). Conversely, the use of sucralose and steviol glycosides increased significantly (+0.5 points and +0.4 points, respectively). All these changes indicate a shift in the most commonly used sweeteners: while acesulfame K remains the most common intense sweetener, it is now followed by sucralose, which has overtaken aspartame, while steviol glycosides, the eighth most used intense sweetener at baseline, became the fourth most used at follow-up, relegating cyclamates and saccharins by one place (to the fifth and sixth most used intense sweeteners, respectively). Significantly lower use was observed for six combinations involving acesulfame K, aspartame, cyclamates and/or saccharins. Conversely, three combinations (acesulfame K/sucralose, sucralose alone and steviol glycosides alone) saw a significant upward change, all sweetened products combined. Note that the growing presence of steviol glycosides in products can be correlated with European regulations authorising their use in food since December $2011{ }^{21}$.

While the frequency of presence of sweetening ingredients or ingredients conveying sweetness has decreased significantly, this does not necessarily mean that the total sugar content of products has decreased (this study focused solely on the presence of these ingredients without considering the quantities used, as these are only rarely provided). It is therefore possible that the classes of ingredients still found in the products (81% of them still contained at least one sweetening ingredient or ingredient conveying sweetness) increased in quantity following the removal of other ingredients used simultaneously in the same product up until then. When compared with recent OQALI category studies conducted, the changes in average quantities of total sugars did not always move in the same direction as changes in the frequency of presence of sweetening ingredients or ingredients conveying sweetness observed in this study. While the study of the Breakfast Cereals category (Oqali 2020a) showed that the significant reduction in the proportion of products containing at least one sweetening ingredient or ingredient conveying sweetness (-7.3 points) was accompanied by a significant reduction in the average sugar content for 10 of the 16 sub-categories (ranging from $-3.2 \mathrm{~g} / 100 \mathrm{~g}$ to $-9.1 \mathrm{~g} / 100 \mathrm{~g}$), for other categories this concordance was lower. Thus, the category study carried out on Ready-to-eat canned meals (Oqali 2023b) - the category with the largest reduction in the proportion of products with sweetening ingredients or ingredients conveying sweetness (-23.9 points) - showed that only six of the 39 sub-categories saw a

[^17]significant reduction in their average sugar content between 2010 and 2020 (ranging from $0.4 \mathrm{~g} / 100 \mathrm{~g}$ to $-1.1 \mathrm{~g} / 100 \mathrm{~g}$). For Ready-to-eat frozen meals (Oqali 2023c), the link between changes in sweetening ingredients or ingredients conveying sweetness and changes in average total sugar content was even weaker: there was a 12.8 point decrease in the share of products using a sweetening ingredient or ingredient conveying sweetness, while only two of the 32 subcategories saw a significant fall in average sugar content between 2012 and 2020 (ranging from $-0.3 \mathrm{~g} / 100 \mathrm{~g}$ to $-1.3 \mathrm{~g} / 100 \mathrm{~g}$) and one sub-category saw an increase in its average sugar content $(+1.0 \mathrm{~g} / 100 \mathrm{~g})$. The Soft drinks category study (Oqali 2023a) showed that the proportion of products with no sweetening ingredients or ingredients conveying sweetness increased significantly (+5.6 points), while changes in average sugar content were fairly limited: three of the 17 sub-categories of interest saw a significant reduction in average sugar content (although two of these categories were frequently consumed) and one increased significantly between the last two monitoring periods. However, when examining the beverages available, the results are consistent, because beverages with no added sugars or intense sweeteners are growing at the expense of beverages with no added sugars but with intense sweeteners. Conversely, the Hot sauces category (Oqali 2020b) saw a decrease in the proportion of products with sweetening ingredients or ingredients conveying sweetness (-12.3 points), while the only significant change observed in average sugar content was a significant increase ($+0.4 \mathrm{~g} / 100 \mathrm{~g}$) between 2010 and 2017. Moreover, in some categories, there was no change in the use of sweetening ingredients or ingredients conveying sweetness, while at the same time average sugar content increased significantly for certain sub-categories. This was the case, for example, with Ice creams and sorbets (Oqali 2017a), where five of the 19 sub-categories saw a significant increase in their average sugar content (ranging from $+0.5 \mathrm{~g} / 100 \mathrm{ml}$ to $+2.3 \mathrm{~g} / 100 \mathrm{ml}$) and two others saw a significant decrease in average content ($-0.9 \mathrm{~g} / 100 \mathrm{ml}$ and $-1.6 \mathrm{~g} / 100 \mathrm{ml}$) between 2010 and 2015, while no change was observed in the use of sweetening ingredients or ingredients conveying sweetness for this category as a whole. Lastly, the Cold sauces category (Oqali 2017b) saw an increase in the use of sweetening ingredients or ingredients conveying sweetness, while there was no significant change in the average sugar content between 2011 and 2016.

DISCUSSION

The results presented in this report correspond to the frequency of presence and therefore only reflect the presence or absence of the sweetening ingredient or ingredient conveying sweetness studied in the food, and not its quantity. This is because ingredient lists very rarely specify the quantities used.

Moreover, the results of this study cannot be used to establish a direct link with the concepts of total sugars, added sugars and free sugars, because it is very difficult to apply their definitions to ingredient lists that are not standardised and do not systematically mention the constituents of the ingredients. Furthermore, the nutritional values of the products enable the total sugar content to be studied but without distinguishing between the different types of sugar. Nevertheless, when they were found in the ingredient lists and even if they were not part of isolated classes, ingredients regarded as free sugars or naturally containing free sugars were included in the sweetening ingredients or ingredients conveying sweetness identified for this study (for example: fruit juices and honey).

The results presented are therefore dependent on the way in which the ingredient lists are labelled, in particular for ingredients that are both sweeteners or ingredients conveying sweetness, and allergens. Depending on how the allergen was declared, it may or may not be regarded as a sweetening ingredient or ingredient conveying sweetness:

- if an ingredient list declared the allergen "milk", as in the example "fromage frais: pasteurised ewe's milk, sea salt, animal rennet, etc.", then no sweetening ingredients or ingredients conveying sweetness were noted;
- on the other hand, if the ingredient list declared the allergen "lactose", as in "fromage frais: pasteurised ewe's milk (lactose), sea salt, animal rennet, etc.", the ingredient lactose was regarded as a sweetening ingredient or ingredient conveying sweetness, and the product was identified as containing the Lactose class.

Lastly, in the section on available updated data, the dates on which data were collected differed from one category to another, and the intervals between two monitoring periods were not always the same. There may have been overlapping in data collection between product categories: the baseline year of collection for one category may correspond to the follow-up year of collection for another category. On the one hand, this implies that the longer the time interval for a category, the greater the probability of observing changes. On the other hand, certain changes and reformulations may have taken place before the period considered and are therefore not highlighted in the study.

OUTLOOK

This study served to update the baseline partly established in the previous ingredient study (Oqali 2012) on the use of intense sweeteners, while taking into account a larger number of sweetening ingredients or ingredients conveying sweetness. Eleven new categories were therefore added and more recent data were used for all 20 categories already monitored in 2012. This study provides an initial follow-up of changes in the use of sweetening ingredients or ingredients conveying sweetness in 27 of the 31 categories currently monitored by OQALI.

These data provide a better understanding of the different forms of sweetening ingredients or ingredients conveying sweetness actually used in processed food products - particularly in categories where they are not necessarily expected - often to enhance taste and/or reduce acidity or bitterness in the product.

Although the frequency of presence remained high, a fall in the use of sweetening ingredients or ingredients conveying sweetness was observed, partly due to the use of ingredients that are either "common", such as white sugar (sucrose), or more "natural", such as fruit juices. These results therefore suggest that manufacturers have begun a process to simplify their ingredient lists through the use of ingredients that are more common (and therefore familiar to consumers), in particular by reducing the use of more processed ingredients (such as sugar syrups) or synthetic ingredients (such as intense sweeteners).

However, it is important to remember that just because a product contains fewer sweetening ingredients or ingredients conveying sweetness does not mean that the amount of sugars it contains has decreased: a sweetening ingredient or ingredient conveying sweetness, already present in the product, may have had its quantity increased to compensate for the removal of another ingredient (as the quantities used are only rarely provided on the packaging, this analysis could not be carried out). It would therefore be beneficial to supplement this study by combining the composition data available via the OQALI category studies with food consumption data, in order to identify the real impact of changes in nutritional composition on the nutrient intakes of the French population. However, this information would only enable conclusions to be drawn about intakes of total sugars rather than those of added sugars, for which data are unavailable. It would also be interesting to consider consumer choices in response to these changes. Indeed, according to the initial elements studied by OQALI with the implementation of the study on how supply and demand contribute to changes in nutritional quality, it seems that the substitutions made by consumers do not always lead to an improvement in the nutritional quality of food consumed (Oqali 2019b).

Annex 1: 0QALI definitions of food categories and types of brands

Category	Definition
Baby food	All processed cereal-based foods (cereals with milk, reconstituted instant cereals, biscuits), baby foods (fruit- and/or plant-based beverages, dairy desserts, fruitand cereal-based desserts, fruit-based desserts) and infant foods with vegetables and/or meat/fish (soups, vegetable preparations, meat preparations, dishes) covered by Regulation (EU) No 609/2013 and Directive 2006/125/EC
Crackers	Peanuts and seeds, coated or sweetened peanuts, dried fruit cocktails, fruit and seed mixtures, Asian mixtures, shrimp fritters, choux pastries, salted crackers, salted crepes dentelles, wafers, breadsticks, savoury mini cakes, sweet or salted popcorn, puffs, sticks and pretzels, tortillas, tuile biscuits
Cereal bars	Cereal bars and bites (cereal bars with fruits or nuts, with or without chocolate, with caramel, with pieces of biscuit, plain, etc.)
Cakes and biscuits	Chocolate or fruit biscuits, filled biscuits, shortbread, barquettes, sandwich biscuits, dry biscuits, etc., biscuit bars, breakfast biscuits, moist cakes, marble cakes, puff pastries, cakes with filling, genoise sponge, etc., macaroons, finger biscuits, crepes, gingerbread, madeleines, financiers, speculoos, coconut macaroons, cookies, rolled biscuits, waffles and wafers
Soft drinks	All beverages with tea, fruit beverages, energy drinks, colas, flavoured waters, lemonades, tonics and bitters, sports drinks, plant-based beverages, fruit and/or vegetable beverages that resemble juices or nectars but contain unauthorised ingredients for this type of product (e.g. fibre, colourings, etc., see Decree 2013-1049), juices containing coconut milk (coconut milk is not a juice according to the Codex Alimentarius)
Soups and broths	Products to be stored at room temperature, chilled or frozen: Broths mentioning consumption as soup on their packaging, vegetable soups, meat-based soups, ethnic soups, starchy soups, cold soups, soups with pasta, fish/shellfish/mollusc soups
Breakfast cereals	All types of breakfast cereals (plain, chocolate, caramel, filled, healthy, whole wheat, etc.), cereal cakes, cereals requiring preparation such as oatflakes, muesli, puffed rice
Delicatessen meats	Cooked ham and shoulder, ham knuckle, roast poultry, ham, raw-cured ham, dry-cured ham, sausages, cooked sausages, duck mousse, country-style pâté, pâté, pork liver mousse or terrine, pâtés or terrines of game, pork, poultry or rabbit, preserved liver, rillettes, lardons, pork belly, dry sausages, dry sausage specialities, chorizo, pavé, rosette, salami, preparation of cooked ham and shoulder, preparation of poultry, preparation of raw- or dry-cured ham
Chocolate products	Chocolate assortments, chocolate bars, sweets, chocolate truffles or bites, chocolate tablets (diet/light, dark, milk, white, filled, with inclusions, etc.), spreads, chocolate powders (to mix with water or milk), capsules for making cocoa beverages
Fruit purées, compotes and desserts	All compotes, low-sugar (light) compotes, fruit desserts, fruit purées, fruit compotes with specific added ingredients, fruit compotes with specific added ingredients (without added sugar)
Confectionery	Boiled sweets, lollipops, gum/jelly sweets, liquid, powdered or gel confectionery, caramels, sugared almonds, candied fruit, fruit pastes, liquorice, calissons, nougats, lozenges, chewy sweets, chewing gum, sugar-free confectionery
Jams	All standard jams, jellies or marmalades (extra or not), low-sugar (light) jams, jellies or marmalades, fruit preparations, other jam-like products, sweetened chestnut or prune purées
Canned fruits	All fruits preserved in water, fruits in fruit juice, fruits in light syrup, fruits in syrup
Cheeses	All cheeses, including cheese bites such as Apérivrais and mixed snacks such as breadsticks/cheese
Ice-creams and sorbets	All ices, ice creams and sorbets in the various existing formats (mini stick, stick, cone, tub and mini tub, bulk), but also ice-cream bars and mini bars, water or fruit ices, sundaes and frozen desserts (mini logs, vacherin, baked Alaska, Liégeois, etc.) and frozen desserts for sharing (including ice cream logs)
Fruit juices and nectars	All fruit juices, fruit juices made from concentrate, nectars, vegetable juices that comply with the national code of good practice, and smoothies that comply with Decree 2013-1049
Infant milks	All infant and follow-on formulae, and growing-up milks
Margarines	Margarines.

Category	Definition
Bread products	Rusks, brioches, crackers, croutons, unleavened bread, puffed cakes, savoury muffins, panettone, pancakes, sandwich breads, toasted bread, hamburger buns, hotdog buns, sandwich buns, pita bread, pre-baked bread, pre-packaged bread, tortilla wraps, cereal specialities (wheat crackers, etc.), filled cereal specialities (filled crackers, filled cereal sticks, etc.), crispbreads (including sweet or savoury cocktail crackers), fine bakery wares (croissants, chocolate croissants, apple turnovers, etc.).
Ready-to-eat canned meals	Canned complete meals (such as cassoulet, blanquette, boeuf Bourguignon, chili con carne, sauerkraut, couscous, cottage or shepherd's pies, paella, meat with vegetables or starchy foods, fish with vegetables or starchy foods, gratins), cooked (microwaveable or not) vegetable and/or starchy food dishes, quenelle dumplings, cooked meats without a side dish (duck confit, pork sauté, etc.), cooked pasta, tabbouleh, canned salads, canned cooked fish, alternative meat-free products, dehydrated prepared meals, self-assembly dishes.
Ready-to-eat fresh meals	Fresh complete meals (such as sauerkraut, paella, couscous, cottage or shepherd's pies, stuffed vegetables and rice, meat with vegetables or starchy foods, fish with vegetables or starchy foods, gratins, risottos), cooked vegetables or starchy foods, plain fresh pasta, cooked pasta (lasagne, stuffed fresh pasta, etc.), breaded meats, battered or breaded fish, quenelle dumplings, cooked meats, cooked fish, fish burgers, prepared shrimps, cooked scallops, tripe, cereal cakes/soy steaks, snails, exotic products (fajitas, enchiladas, pastillas, samosas, fried spring rolls, shrimp fritters, salt cod fritters, etc.)
Ready-to-eat frozen meals	Frozen complete meals (such as couscous, lasagne, moussaka, cottage or shepherd's pies, meat/fish + various side dishes), cooked meats or fish without a side dish (e.g. fish à la Bordelaise), cooked vegetables or starchy foods (side dishes "alone" such as Chinese fried rice, gnocchi, mashed potatoes and mushrooms, etc.), vegetable patties, gratins and flans, delicatessen seafood starters (fish baked in scallop shell, cassolette, etc.), breaded and/or fried products (battered or breaded fish, squid fritters, nuggets, cordon bleu, etc.), ethnic fried products (salt cod fritters, etc.), snails, savoury soufflés, as well as all the mini versions of these dishes. Protein steaks (including unflavoured), steaks flavoured with tomato or onion, for example (including non-protein steaks). Minced meatballs. Breaded cheeses.
Dessert mixes	Powdered dessert preparations to which ingredients have to be added (mixes for clafoutis, custard tarts, cookies, custard sauces, pastry cream, crème brûlée, panna cotta, crepes, waffles, pancakes, rice desserts, dairy-based desserts, cakes, etc.), ready-to-cook doughs or batters (for cookies, crème brûlée, cakes)
Fresh dairy products and desserts	All yoghurts and fermented milks (sugar-sweetened, artificially-sweetened or unsweetened, classic or gourmet), fresh cheeses (sugar-sweetened, artificiallysweetened or unsweetened, classic or gourmet), fresh desserts (dessert creams, curdled milks, jellied milks, Liégeois desserts, fresh desserts with cereals such as rice pudding, fresh mousse desserts, fresh desserts with eggs such as crème caramel, crème brûlée, custards and flans, floating islands, panna cotta and other dairybased desserts, desserts such as chocolate fondant, profiteroles, tiramisu, clafoutis, rum babas and cakes, whether sugar-sweetened, light or artificially-sweetened) and fresh plant-based desserts (soy desserts and other plant-based desserts)
Fresh delicatessen products	Products to be stored chilled: Pizzas, ready-rolled pastry (brick, filo, shortcrust, flaky, rich shortcrust, pizza dough), smoked fish, starchy salads (pasta salads, potato salads, tabbouleh, etc.), raw vegetable salads (crudités), mixed salads, brawn or saveloy salads, sandwiches, burgers, toasted sandwiches and breaded escalopes, other snacks, surimi (crab sticks), savoury tarts, flammekueches, quiches Lorraines, spreads (seafood rillettes, taramasalata, seafood terrines, tzatziki, ktipiti, etc.), blinis, savoury filled crepes, fresh plain or sweetened crepes, shrimps, puff pastries or brioches, pâté in pastry, mussels, fish roe, sauces for pasta or fish, seafood tapas, set lunches such as mixed salad sold with a starter and/or dessert, other fresh delicatessen products such as savoury cakes, pizza kits, crustless tarts, etc.
Processed potato products	All crisps and similar products (old-fashioned, classic, wavy, low-fat, including oven-baked potato products), French fries (for microwave, deep-fryer or oven), other potato-based side dishes (dauphiné, croquettes, duchess and noisette potatoes, röstis - including onion röstis, potatoes sautéed in duck fat, potato wedges, sautéed or fried potatoes), steamed potatoes and mashed potatoes (ready-to-eat (stored at room temperature/chilled/frozen), in flakes, may contain mushrooms). Sweet potato fries.
Hot sauces	Products to be stored at room temperature: Sauces for meat or fish (Armorican, Bearnaise, beurre blanc, Hollandaise, etc.), sauces for pasta (Bolognese, with cooked vegetables, pesto, etc.), sauces to accompany dishes (sweet and sour, Basque, curry, Mexican, etc.), tomato coulis, bechamel sauces

Category	Definition
Cold sauces	Seasoning sauces (such as French dressing, vinaigrette, salad dressings, crudité sauces, Caesar sauce, etc.; low-fat/light or not), cold emulsified sauces (such as mayonnaise, aioli, tartare, Béarnaise, pepper, Bourguignon, burger, American, rouille, curry, for chips, etc.; low-fat/light or not), cold non-emulsified sauces (such as ketchups, barbecue sauce, Mexican sauce, etc.; light or not)
Syrups	All syrups, concentrated beverages to dilute (squashes and cordials), concentrated beverages to dilute without added sugar
Frozen snacking products	Pizzas, quiches, tarts, pies, savoury cakes, crepes, pancakes, pastillas, puff pastries, pastry friands, buns, hamburgers, wraps, filled/topped baguettes, cocktail or aperitif products (aumonière bundles, puff pastries, choux pastries, gougères, party loaves, canapés, verrines), salads, tabbouleh, sandwiches, toasted sandwiches (croque monsieur), hot dogs, kebabs, meats in pastry (pâté, roast meat, ham)
Frozen pastries and desserts	All frozen pastries and cakes, as well as products found in the frozen dessert section, i.e. products such as: croissants, chocolate croissants, raisin buns, brioches, milk breads, apple turnovers; plain or flavoured brioche, with chocolate chips or candied fruit, Tropézienne, French-toast style brioche; doughnuts, sweet fritters, churros, crepes, wafles, pancakes; macaroons; tarts, crumbles, gâteaux, cakes, genoises (sponges), financiers, madeleines; choux pastries (éclairs, profiteroles, Paris-Brest, Saint-Honoré, etc.); ; esserts such as bavarois, tiramisu, opera, cheesecake, Black Forest gateau, charlotte, dessert logs (the "Ice creams and sorbets" category already includes ice-cream logs), etc.; custard tarts, clafoutis, Breton far cake, Basque cake, kouign-amann, kings' cakes, mille-feuilles, cookies; products such as panna cotta, crème brûlée and mousses found in the frozen dessert section.

Types of brands	Definition
National brands	Products whose brand belongs to a manufacturer and can be found in most supermarkets and hypermarkets in France (e.g. Danone, Nestlé, Lu, etc.).
Retailer brands	Retail chains' branded products, whose characteristics have been defined by the chains that retail them (e.g. own brands of chains such as Carrefour, Auchan,
Système U, Leclerc, Intermarché, etc.)	

Annex 2: Breakdown of products with and without sweetening ingredients by food category (among the 31 categories currently considered by OQALI; sorted in descending order of the proportion of products with sweetening ingredients)

For this graph and in order to compare our results with those of other studies, only five classes of sweetening ingredients were considered: Sucrose, Syrups, Other sugars, Lactose and Honey.

Annex 3: Numbers and proportions of products by food category and type of brand, for the products studied in the part on the review of the use of sweetening ingredients or ingredients conveying sweetness (among the 31 categories studied based on the latest data available)

	National brands		Retailer brands		Entry-level retailer brands		Hard discount		Specialised retailer brands		Specialised organic retailer brands		All types of brands combined	
	Numbers of products	Proportions of products	Numbers of products	Proportions of products	Numbers of products	Proportions of products	Numbers of products	Proportions of products	Numbers of products	Proportions of products	Numbers of products	Proportions of products	Numbers of products	Proportions of products
Baby food	724	74\%	187	19\%	0	0\%	48	5\%	17	2\%	0	0\%	976	2\%
Crackers	250	23\%	563	52\%	59	5\%	210	19\%	0	0\%	0	0\%	1082	3\%
Cereal bars	47	26\%	88	49\%	13	7\%	31	17\%	0	0\%	2	1\%	181	0,5\%
Cakes and biscuits	943	30\%	1493	48\%	126	4\%	470	15\%	0	0\%	88	3\%	3120	8%
Soft drinks	1276	54\%	845	36\%	34	1\%	166	7\%	0	0\%	22	1\%	2343	6\%
Soups and broths	370	47\%	234	30\%	21	3\%	79	10\%	69	9\%	15	2\%	788	2\%
Breakfast cereals	256	39\%	267	41\%	20	3\%	90	14\%	0	0\%	26	4\%	659	2\%
Delicatessen meats	355	21\%	881	51\%	141	8\%	345	20\%	0	0%	0	0\%	1722	4\%
Chocolate products	405	40\%	379	37\%	54	5\%	175	17\%	0	0%	0	0\%	1013	3\%
Fruit purées, compotes and desserts	357	37\%	462	48\%	23	2\%	86	9\%	0	0\%	44	5\%	972	2\%
Confectionery	748	60\%	323	26\%	28	2\%	134	11\%	0	0\%	22	2\%	1255	3\%
Jams	295	38\%	359	46\%	14	2\%	78	10\%	0	0\%	35	4\%	781	2\%
Canned fruits	59	24\%	125	51\%	22	9\%	39	16\%	0	0\%	0	0\%	245	1\%
Cheeses	520	26\%	1043	52\%	100	5\%	328	16\%	0	0\%	13	1\%	2004	5\%
Ice-creams and sorbets	434	22\%	659	34\%	39	2\%	179	9\%	642	33\%	0	0\%	1953	5\%
Fruit juices and nectars	513	31\%	766	47\%	95	6\%	237	14\%	0	0\%	26	2\%	1637	4\%
Infant milks	110	85\%	14	11\%	0	0\%	5	4\%	0	0\%	0	0\%	129	0%
Margarines	44	40\%	41	38\%	7	6\%	16	15\%	0	0\%	1	1\%	109	0,3\%
Bread products	714	41\%	719	41\%	39	2\%	209	12\%	0	0\%	59	3\%	1740	4\%
Ready-to-eat canned meals	1295	48\%	1045	39\%	57	2\%	247	9\%	0	0\%	28	1\%	2672	7\%
Ready-to-eat fresh meals	444	31\%	771	54\%	31	2\%	170	12\%	0	0\%	0	0\%	1416	4\%
Ready-to-eat frozen meals	462	22\%	719	34\%	38	2\%	255	12\%	634	30\%	0	0\%	2108	5\%
Dessert mixes	234	71\%	66	20\%	0	0\%	29	9\%	0	0\%	0	0\%	329	1\%
Fresh dairy products and desserts	1069	34\%	1467	47\%	86	3\%	426	14\%	0	0\%	67	2\%	3115	8\%
Fresh delicatessen products	443	19\%	1378	60\%	91	4\%	357	16\%	0	0\%	24	1\%	2293	6\%
Processed potato products	221	28\%	362	46\%	35	4\%	91	12\%	78	10\%	4	1\%	791	2\%
Hot sauces	196	32\%	297	49\%	17	3\%	83	14\%	0	0\%	16	3\%	609	2\%
Cold sauces	215	35\%	313	50\%	25	4\%	70	11\%	0	0\%	0	0\%	623	2\%
Syrups	310	46\%	290	43\%	14	2\%	60	9\%	0	0\%	7	1\%	681	2\%
Frozen snacking products	258	22\%	352	31\%	18	2\%	116	10\%	403	35\%	0	0\%	1147	3\%
Frozen pastries and desserts	67	11\%	134	22\%	1	0,2\%	47	8\%	359	59\%	0	0\%	608	2\%
All categories combined	13634	35\%	16642	43\%	1248	3\%	4876	12\%	2202	6\%	499	1\%	39101	100\%

Annex 4: Numbers and proportions of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by food category (31 categories currently considered by OQALI) and among the 39,101 products studied

Product category	Breakdown of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in their ingredient lists, by product category (in the 31 product categories currently considered by OQALI)															
			1 class		2 classes		3 classes		4 classes		5 classes		6 classes		7 classes	
	Number	Proportion														
All product categories combined ($n=39101$)	9067	23\%	13117	34\%	9953	25\%	4562	12\%	1833	5\%	471	1\%	79	0,2\%	19	0,05\%
Baby food ($\mathrm{n}=976$)	576	59\%	281	29\%	95	10\%	20	2\%	4	0,4\%	0	0\%	0	0\%	0	0\%
Crackers ($\mathrm{n}=1082$)	510	47\%	285	26\%	222	21\%	50	5\%	15	1\%	0	0\%	0	0\%	0	0\%
Cereal bars ($\mathrm{n}=181$)	0	0\%	2	1\%	10	6\%	45	25\%	90	50\%	30	17\%	3	2\%	1	1\%
Cakes and biscuits ($\mathrm{n}=3120$)	3	0,1\%	841	27\%	1178	38\%	750	24\%	301	10\%	37	1\%	7	0,2\%	3	0,1\%
Soft drinks ($\mathrm{n}=2343$)	211	9\%	640	27\%	1221	52\%	237	10\%	33	1\%	1	0,04\%	0	0\%	0	0\%
Soups and broths ($\mathrm{n}=788$)	323	41\%	298	38\%	135	17\%	27	3\%	5	1\%	0	0\%	0	0\%	0	0\%
Breakfast cereals ($\mathrm{n}=659$)	60	9\%	193	29\%	258	39\%	125	19\%	18	3\%	5	1\%	0	0\%	0	0\%
Delicatessen meats ($\mathrm{n}=1722$)	279	16\%	630	37\%	526	31\%	261	15\%	23	1\%	3	0,2\%	0	0\%	0	0\%
Chocolate products ($\mathrm{n}=1013$)	8	1\%	553	55\%	286	28\%	118	12\%	31	3\%	11	1\%	4	0,4\%	2	0,2\%
Fruit purées, compotes and desserts ($\mathrm{n}=972$)	296	30\%	567	58\%	106	11\%	3	0,3\%	0	0\%	0	0\%	0	0\%	0	0\%
Confectionery ($\mathrm{n}=1255$)	1	0,1\%	44	4\%	577	46\%	441	35\%	162	13\%	23	2\%	7	1\%	0	0\%
Jams ($\mathrm{n}=781$)	0	0\%	430	55\%	321	41\%	30	4\%	0	0\%	0	0\%	0	0\%	0	0\%
Canned fruits ($\mathrm{n}=245$)	0	0\%	175	71\%	69	28\%	1	0,4\%	0	0\%	0	0\%	0	0\%	0	0\%
Cheeses ($\mathrm{n}=2004$)	1899	95\%	97	5\%	8	0,4\%	0	0\%	0	0\%	0	0\%	0	0\%	0	0\%
Ice-creams and sorbets ($\mathrm{n}=1953$)	0	0\%	31	2\%	241	12\%	766	39\%	619	32\%	246	13\%	44	2\%	6	0,3\%
Fruit juices and nectars ($\mathrm{n}=1637$)	80	5\%	1282	78\%	244	15\%	25	2\%	6	0,4\%	0	0\%	0	0\%	0	0\%
Infant milks ($\mathrm{n}=129$)	17	13\%	86	67\%	25	19\%	1	1\%	0	0\%	0	0\%	0	0\%	0	0\%
Margarines ($\mathrm{n}=109$)	95	87\%	14	13\%	0	0\%	0	0\%	0	0\%	0	0\%	0	0\%	0	0\%
Bread products ($\mathrm{n}=1740$)	425	24\%	925	53\%	335	19\%	45	3\%	10	1\%	0	0\%	0	0\%	0	0\%
Ready-to-eat canned meals ($\mathrm{n}=2672$)	1240	46\%	931	35\%	390	15\%	89	3\%	22	1\%	0	0\%	0	0\%	0	0\%
Ready-to-eat fresh meals ($\mathrm{n}=1416$)	406	29\%	534	38\%	303	21\%	128	9\%	38	3\%	6	0,4\%	1	0,1\%	0	0\%
Ready-to-eat frozen meals ($\mathrm{n}=2108$)	868	41\%	751	36\%	347	16\%	101	5\%	36	2\%	5	0,2\%	0	0\%	0	0\%
Dessert mixes ($\mathrm{n}=329$)	43	13\%	196	60\%	70	21\%	19	6\%	1	0,3\%	0	0\%	0	0\%		0\%
Fresh dairy products and desserts ($\mathrm{n}=3115$)	489	16\%	1159	37\%	939	30\%	364	12\%	120	4\%	40	1\%	4	0,1\%	0	0\%
Fresh delicatessen products ($\mathrm{n}=2293$)	529	23\%	592	26\%	661	29\%	375	16\%	123	5\%	12	1\%	1	0,04\%		0\%
Processed potato products ($\mathrm{n}=791$)	401	51\%	334	42\%	49	6\%	7	1\%	0	0\%	0	0\%	0	0\%	0	0\%
Hot sauces ($\mathrm{n}=609$)	114	19\%	358	59\%	97	16\%	32	5\%	8	1\%	0	0\%	0	0\%		0\%
Cold sauces ($\mathrm{n}=623$)	38	6\%	244	39\%	273	44\%	55	9\%	13	2\%	0	0\%	0	0\%	0	0\%
Syrups ($\mathrm{n}=681$)	6	1\%	101	15\%	382	56\%	170	25\%	22	3\%	0	0\%	0	0\%	0	0\%
Frozen snacking products ($\mathrm{n}=1147$)	147	13\%	374	33\%	400	35\%	137	12\%	62	5\%	23	2\%	3	0,3\%	1	0,1\%
Frozen pastries and desserts ($\mathrm{n}=608$)	3	0,5\%	169	28\%	185	30\%	140	23\%	71	12\%	29	5\%	5	1\%	6	1\%

I: total numbers all product categories combined or by produt

Annex 5: Numbers and proportions of products by the number of different classes of sweetening ingredients or ingredients conveying sweetness found in the same product, by type of brand (among the 31 food categories currently considered by OQALI) and among the 39,101 products studied

Type of brand	Proportion of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in their ingredient lists, by type of brand (in the 31 product categories currently considered by OQALI)															
	No sweeteningingredients oringredients conveyingsweetness		1 class		2 classes		3 classes		4 classes		5 classes		6 classes		7 classes	
	Number	Proportion														
All types of brands combined ($n=39101$)	9067	23\%	13117	34\%	9953	25\%	4562	12\%	1833	5\%	471	1\%	79	0,2\%	19	0,05\%
National brands ($\mathrm{n}=13634$)	3270	24\%	4573	34\%	3544	26\%	1531	11\%	576	4\%	108	1\%	25	0,2\%	7	0,1\%
Retailer brands ($\mathrm{n}=16642$)	3862	23\%	5821	35\%	4243	25\%	1811	11\%	699	4\%	175	1\%	26	0,2\%	5	0,03\%
Entry-level retailer brands ($\mathrm{n}=1248$)	281	23\%	409	33\%	315	25\%	176	14\%	60	5\%	6	0,5\%	0	0\%	1	0,1\%
Hard discount ($\mathrm{n}=4876$)	1041	21\%	1612	33\%	1327	27\%	620	13\%	224	5\%	45	1\%	7	0,1\%	0	0\%
Specialised retailer brands ${ }^{1}(\mathrm{n}=2202)$	426	19\%	530	24\%	420	19\%	391	18\%	271	12\%	137	6\%	21	1\%	6	0,3\%

[^18]
Abstract

Annex 6: Numbers and proportions of products by combination of most commonly used classes of sweetening ingredients or ingredients conveying sweetness, all products combined (among the 31 food categories currently considered by OQALI) and among the 39,101 products studied

Class of sweetening ingredients or ingredients conveying sweetness / combinations of classes of sweetening ingredient or ingredient conveying sweetness	Products containing at least the class/combination of classes of sweetening ingredients or ingredients conveying sweetness considered, all categories combined (among the 31 categories currently monitored by OQALI)	
	Number	Proportion
No sweetening ingredients or ingredients conveying sweetness	9067	23\%
Sucrose	7927	20\%
Other combinations ${ }^{1}$	5030	13\%
Fruit juices and concentrates / sucrose	2753	7\%
Syrups / sucrose	2652	7\%
Fruit juices and concentrates	2254	6\%
Other sugars ${ }^{2}$	1533	4\%
Sucrose / other sugars ${ }^{2}$	1182	3\%
Syrups / sucrose / other classes ${ }^{3}$	974	2\%
Sucrose / other classes ${ }^{2}$	867	2\%
Fruit juices and concentrates / syrups / sucrose	846	2\%
Syrups / sucrose / lactose	817	2\%
Sucrose / lactose	714	2\%
Syrups / sucrose / other sugars ${ }^{2}$	566	1\%
Syrups	534	1\%
Lactose	506	1\%
Syrups / sucrose / lactose / other classes ${ }^{3}$	474	1\%
Syrups / other sugars ${ }^{2}$	405	1\%

[^19]
Annex 7: Numbers and proportions of products containing at least the intense sweetener considered in sweetened products and in all products, for each of the four relevant food categories

Product category ($n=$ total number of products for the category considered)	Intense sweetener	Number of products containing at least the intense sweetener studied*	Proportion in relation to products containing at least one intense sweetener in the product category considered	Proportion in relation to all products taken into account for the product category considered
Soft drinks$(\mathrm{n}=2343)$	At least one intense sweetener	407	100\%	17\%
	Acesulfame K	254	62\%	11\%
	Sucralose	217	53\%	9\%
	Steviol glycosides	99	24\%	4\%
	Aspartame	91	22\%	4\%
	Saccharins	15	4\%	1\%
	Cyclamates	14	3\%	1\%
	Neohesperidin DC	2	0,5\%	0,1\%
Confectionery$(\mathrm{n}=1255)$	At least one intense sweetener	239	100\%	19\%
	Acesulfame K	173	72\%	14\%
	Aspartame	135	56\%	11\%
	Sucralose	116	49\%	9\%
	Steviol glycosides	23	24\%	2\%
	Salt of aspartame-acesulfame	3	1\%	0,2\%
Fresh dairy products and desserts ($\mathrm{n}=3115$)	At least one intense sweetener	123	100\%	4\%
	Acesulfame K	119	97\%	4\%
	Sucralose	73	59\%	2\%
	Aspartame	41	33\%	1\%
	Cyclamates	8	7\%	0,3\%
	Neohesperidin DC	8	7\%	0,3\%
	Steviol glycosides	7	6\%	0,2\%
	Neotame	1	1\%	0,03\%
$\begin{aligned} & \text { Syrups } \\ & (\mathrm{n}=681) \end{aligned}$	At least one intense sweetener	73	100\%	11\%
	Acesulfame K	63	86\%	9\%
	Sucralose	62	85\%	9\%
	Steviol glycosides	17	23\%	2\%
	Cyclamates	16	22\%	2\%
	Aspartame	11	15\%	2\%

[^20]Annex 8: Numbers and proportions of products containing at least the intense sweetener considered in sweetened products and in all products, by type of brand, based on the latest data available (among the 31 food categories currently monitored by OQALI)

Type of brand ($n=$ total number of products for the type of brand considered)	Intense sweetener	Number of products containing at least the intense sweetener studied*	Proportion in relation to products containing at least one intense sweetener ($\mathrm{n}=926$)	Proportion in relation to all products taken into account in the study ($\mathrm{n}=39$ 101)
$\begin{aligned} & \text { National brands } \\ & \quad(\mathrm{n}=13634) \end{aligned}$	At least one intense sweetener	532	100\%	4\%
	Acesulfame K	378	71\%	3\%
	Sucralose	268	50\%	2\%
	Aspartame	190	36\%	1\%
	Steviol glycosides	95	18\%	1\%
	Cyclamates	25	5\%	0,2\%
	Saccharins	11	2\%	0,1\%
	Neohesperidin DC	10	2\%	0,1\%
	Salt of aspartame-acesulfame	3	1\%	0,02\%
$\begin{aligned} & \text { Retailer brands } \\ & \quad(\mathrm{n}=16642) \end{aligned}$	At least one intense sweetener	234	100\%	1\%
	Sucralose	164	70\%	1\%
	Acesulfame K	148	63\%	1\%
	Steviol glycosides	45	19\%	0,3\%
	Aspartame	38	16\%	0,2\%
	Cyclamates	3	1\%	0,02\%
	Neotame	1	0\%	0,01\%
	Saccharins	1	0\%	0,01\%
Entry-level retailer brands ($\mathrm{n}=1248$)	At least one intense sweetener	47	100\%	4\%
	Acesulfame K	37	79\%	3\%
	Sucralose	26	55\%	2\%
	Aspartame	15	32\%	1\%
	Saccharins	11	23\%	1\%
	Cyclamates	10	21\%	1\%
	Steviol glycosides	1	2\%	0,1\%
Hard discount ($\mathrm{n}=4876$)	At least one intense sweetener	109	100\%	2\%
	Acesulfame K	72	66\%	1\%
	Sucralose	48	44\%	1\%
	Aspartame	46	42\%	1\%
	Steviol glycosides	15	14\%	0,3\%
	Cyclamates	9	8\%	0,2\%
	Saccharins	6	6\%	0,1\%
Specialised retailer brands ${ }^{1}$$(\mathrm{n}=2202)$	At least one intense sweetener	4	100\%	0,2\%
	Steviol glycosides	3	75\%	0,1\%
	Acesulfame K	1	25\%	0,05\%
	Aspartame	1	25\%	0,05\%

[^21]Annex 9: Numbers and proportions of products by combination of intense sweeteners, in sweetened products and in all products (among the 31 food categories currently monitored by OQALI)

Intense sweetener / combination of intense sweeteners	Number of intense sweeteners found	Number of products with the intense sweetener / combination of intense sweeteners	Proportion in relation to products containing at least one intense sweetener for all the product categories	Proportion in relation to all the product categories
acesulfame K / sucralose	2	296	32\%	1\%
acesulfame K / aspartame	2	190	21\%	0,5\%
steviol glycosides	1	135	15\%	0,3\%
sucralose	1	116	13\%	0,3\%
acesulfame K / aspartame/ sucralose	3	64	7\%	0,2\%
acesulfame K	1	26	3\%	0,1\%
aspartame	1	12	1\%	0,03\%
sucralose / steviol glycosides	2	12	1\%	0,03\%
acesulfame K / sucralose / steviol glycosides	3	10	1\%	0,03\%
acesulfame K / aspartame / cyclamates / saccharins	4	9	0,97\%	0,02\%
acesulfame K / cyclamates	2	8	0,86\%	0,02\%
acesulfame K / cyclamates / neohesperidin DC	3	8	0,86\%	0,02\%
cyclamates / saccharins	2	8	0,86\%	0,02\%
acesulfame K / aspartame / cyclamates	3	6	0,65\%	0,02\%
acesulfame K / cyclamates / sucralose	3	6	0,65\%	0,02\%
saccharins	1	5	0,54\%	0,01\%
acesulfame K / aspartame / saccharins	3	3	0,32\%	0,01\%
acesulfame K / aspartame / neohesperidin DC	3	2	0,22\%	0,01\%
acesulfame K / aspartame / salt of aspartame-acesulfame	3	2	0,22\%	0,01\%
acesulfame K / cyclamates / saccharins	3	2	0,22\%	0,01\%
acesulfame K / steviol glycosides	2	2	0,22\%	0,01\%
acesulfame K / aspartame / sucralose / salt of aspartame-acesulfame	4	1	0,11\%	0,003\%
acesulfame K / saccharins	2	1	0,11\%	0,003\%
aspartame / saccharins	2	1	0,11\%	0,003\%
sucralose / neotame	2	1	0,11\%	0,003\%

Annex 10: Numbers and proportions of products by combination of intense sweeteners, in sweetened products and in all products, for the four relevant food categories

Product category	Intense sweetener / combination of intense sweeteners	Number of intense sweeteners found	Number of products with the intense sweetener / combination of intense sweeteners	$\begin{array}{\|c} \hline \text { Proportion in relation } \\ \text { to products } \\ \text { containing at least } \\ \text { one intense } \\ \text { sweetener in the } \\ \text { product category } \\ \text { considered } \\ \hline \end{array}$	Proportion in relation to all the product categories combined
Soft drinks ($\mathrm{n}=2343$ including 407 with at least one intense sweetener)	acesulfame K / sucralose	2	159	39\%	7\%
	steviol glycosides	1	97	24\%	4\%
	acesulfame K / aspartame	2	71	17\%	3\%
	sucralose	1	52	13\%	2\%
	acesulfame K / aspartame / cyclamates / saccharins	4	8	2\%	0,3\%
	acesulfame K / aspartame / cyclamates	3	3	0,7\%	0,1\%
	acesulfame K / aspartame / saccharins	3	3	0,7\%	0,1\%
	acesulfame K / aspartame/ sucralose	3	3	0,7\%	0,1\%
	acesulfame K	1	2	0,5\%	0,1\%
	acesulfame K / aspartame / neohesperidin DC	3	2	0,5\%	0,1\%
	acesulfame K / cyclamates / saccharins	3	2	0,5\%	0,1\%
	sucralose / steviol glycosides	2	2	0,5\%	0,1\%
	acesulfame K / cyclamates / sucralose	3	1	0,2\%	0,04\%
	aspartame / saccharins	2	1	0,2\%	0,04\%
	saccharins	1	1	0,2\%	0,04\%
Confectionery ($\mathrm{n}=1255$ including 239 with at least one intense sweetener)	acesulfame K / aspartame	2	74	31\%	6\%
	acesulfame K / aspartame/ sucralose	3	52	22\%	4\%
	sucralose	1	37	15\%	3\%
	acesulfame K / sucralose	2	26	11\%	2\%
	steviol glycosides	1	23	10\%	2\%
	acesulfame K	1	18	8\%	1\%
	aspartame	1	6	3\%	0,5\%
	acesulfame K / aspartame / salt of aspartame-acesulfame	3	2	0,8\%	0,2\%
	acesulfame K / aspartame / sucralose / salt of aspartame-acesulfame	4	1	0,4\%	0,1\%
Dairy products and fresh desserts ($\mathrm{n}=3115$ including 123 with at least one intense sweetener)	acesulfame K / sucralose	2	64	52\%	2\%
	acesulfame K / aspartame	2	37	30\%	1\%
	acesulfame K / cyclamates / neohesperidin DC	3	8	7\%	0,3\%
	sucralose	1	4	3\%	0,1\%
	acesulfame K / sucralose / steviol glycosides	3	3	2\%	0,1\%
	acesulfame K / steviol glycosides	2	2	2\%	0,1\%
	steviol glycosides	1	2	2\%	0,1\%
	acesulfame K	1	1	0,8\%	0,0\%
	acesulfame K / aspartame/ sucralose	3	1	0,8\%	0,0\%
	sucralose / neotame	2	1	0,8\%	0,0\%
Syrups ($\mathrm{n}=681$ including 73 with at least one intense sweetener)	acesulfame $\mathrm{K} /$ sucralose	2	32	44\%	5\%
	sucralose / steviol glycosides	2	10	14\%	1\%
	acesulfame K / aspartame/ sucralose	3	8	11\%	1\%
	acesulfame K / cyclamates	2	8	11\%	1\%
	acesulfame K / sucralose / steviol gly cosides	3	7	10\%	1\%
	acesulfame K / cyclamates / sucralose	3	5	7\%	1\%
	acesulfame K / aspartame / cyclamates	3	3	4\%	0,4\%

Annex 11: Numbers and proportions of products by combination of intense sweeteners, in sweetened products and in all products, by type of brand (among the $\mathbf{3 1}$ food categories currently monitored by OQALI)

Type of brand	Intense sweetener / combination of intense sweeteners	Number of intense sweeteners found	Number of products with the intense sweetener / combination of intense sweeteners	Proportion in relation to products containing at least one intense sweetener for the type of brands considered	Proportion in relation to all the product categories combined
National brands	acesulfame K / sucralose	2	162	30\%	1\%
	acesulfame K / aspartame	2	121	23\%	1\%
	steviol glycosides	1	92	17\%	1\%
	sucralose	1	50	9\%	0,4\%
	acesulfame K / aspartame/ sucralose	3	49	9\%	0,4\%
	acesulfame K	1	10	2\%	0,1\%
	acesulfame K / cyclamates	2	8	2\%	0,1\%
	acesulfame K / cyclamates / neohesperidin DC	3	8	2\%	0,1\%
	aspartame	1	7	1\%	0,1\%
	saccharins	1	5	0,9\%	0,04\%
	acesulfame K / aspartame / cyclamates	3	3	0,6\%	0,02\%
	acesulfame K / aspartame / saccharins	3	3	0,6\%	0,02\%
	acesulfame K / cyclamates / sucralose	3	3	0,6\%	0,02\%
	acesulfame K / sucralose / steviol glycosides	3	3	0,6\%	0,02\%
	acesulfame K / aspartame / cyclamates / saccharins	4	2	0,4\%	0,01\%
	acesulfame K / aspartame / neohesperidin DC	3	2	0,4\%	0,01\%
	acesulfame K / aspartame / salt of aspartame-acesulfame	3	2	0,4\%	0,01\%
	acesulfame K / aspartame / sucralose / salt of aspartame-acesulfame	4	1	0,2\%	0,01\%
	acesulfame K / cyclamates / saccharins	3	1	0,2\%	0,01\%
Retailer brands	acesulfame K / sucralose	2	92	39\%	1\%
	sucralose	1	46	20\%	0,3\%
	steviol glycosides	1	28	12\%	0,2\%
	acesulfame K / aspartame	2	26	11\%	0,2\%
	acesulfame K	1	10	4\%	0,1\%
	acesulfame K / aspartame/ sucralose	3	8	3\%	0,05\%
	sucralose / steviol glycosides	2	8	3\%	0,05\%
	acesulfame K / sucralose / steviol glycosides	3	7	3\%	0,04\%
	aspartame	1	3	1\%	0,02\%
	acesulfame K / cyclamates / sucralose	3	2	0,9\%	0,01\%
	acesulfame K / steviol glycosides	2	2	0,9\%	0,01\%
	acesulfame K / aspartame / cyclamates / saccharins	4	1	0,4\%	0,01\%
	sucralose / neotame	2	1	0,4\%	0,01\%
Entry-level retailer brands	acesulfame K / sucralose	2	22	47\%	2\%
	acesulfame K / aspartame	2	9	19\%	1\%
	cyclamates / saccharins	2	5	11\%	0,4\%
	acesulfame K / aspartame / cyclamates / saccharins	4	4	9\%	0,3\%
	sucralose	1	3	6\%	0,2\%
	acesulfame K / aspartame/ sucralose	3	1	2\%	0,1\%
	acesulfame K / cyclamates / saccharins	3	1	2\%	0,1\%
	aspartame / saccharins	2	1	2\%	0,1\%
	steviol glycosides	1	1	2\%	0,1\%
Hard discount	acesulfame K / aspartame	2	33	30\%	1\%
	acesulfame K / sucralose	2	20	18\%	0,4\%
	sucralose	1	17	16\%	0,3\%
	steviol glycosides	1	11	10\%	0,2\%
	acesulfame K	1	6	6\%	0,1\%
	acesulfame K / aspartame/ sucralose	3	6	6\%	0,1\%
	sucralose / steviol glycosides	2	4	4\%	0,1\%
	acesulfame K / aspartame / cyclamates	3	3	3\%	0,1\%
	cyclamates / saccharins	2	3	3\%	0,1\%
	acesulfame K / aspartame / cyclamates / saccharins	4	2	2\%	0,04\%
	aspartame	1	2	2\%	0,04\%
	acesulfame K / cyclamates / sucralose	3	1	0,9\%	0,02\%
	acesulfame K / saccharins	2	1	0,9\%	0,02\%
Specialised retailer brands ${ }^{1}$	steviol glycosides	1	3	75\%	0,1\%
	acesulfame K / aspartame	2	1	25\%	0,05\%

[^22]Annex 12: Numbers and proportions of products by food category and type of brand, for the products studied in the part on changes in the use of sweetening ingredients or ingredients conveying sweetness (27 categories studied)

brand	Natio	rands	Retail	rands	Entry-leve	ler brands	Hard	ount	Specialised	iler brands	Specialised	anic retailer ds	All types of b	ds combined
Product categories	Baseline	Follow-up												
Crackers	18\%	23\%	47\%	52\%	10\%	5\%	25\%	19\%	0\%	0\%	0\%	0\%	3\%	3\%
Cereal bars	25\%	26\%	44\%	49\%	11\%	7\%	20\%	17\%	0\%	0\%	0\%	1\%	1\%	1\%
Cakes and biscuits	33\%	30\%	34\%	48\%	7\%	4\%	25\%	15\%	0\%	0\%	0\%	3\%	9\%	9\%
Softdrinks	31\%	54\%	50\%	36\%	5\%	1\%	13\%	7\%	0\%	0\%	0,1\%	1\%	5\%	7\%
Soups and broths	52\%	47\%	31\%	30\%	3\%	3\%	14\%	10\%	0\%	9\%	0\%	2\%	3\%	2\%
Breakfast cereals	35\%	39\%	39\%	41\%	4\%	3\%	22\%	14\%	0\%	0\%	0\%	4\%	2\%	2\%
Delicatessen meats	13\%	21\%	56\%	51\%	14\%	8\%	18\%	20\%	0\%	0\%	0\%	0\%	6\%	5\%
Chocolate products	39\%	40\%	30\%	37\%	8\%	5\%	24\%	17\%	0\%	0\%	0\%	0\%	4\%	3\%
Fruit purées, compotes and desserts	51\%	37\%	35\%	48\%	3\%	2\%	11\%	9\%	0\%	0\%	0\%	5\%	2\%	3\%
Jams	29\%	38\%	54\%	46\%	4\%	2\%	13\%	10\%	0\%	\%\%	0\%	4\%	2\%	2\%
Canned fruits	36\%	24\%	35\%	51\%	18\%	9\%	12\%	16\%	0\%	0\%	0\%	0\%	1\%	1\%
Ice-creams and sorbets	15\%	22\%	37\%	34\%	3\%	2\%	12\%	9\%	34\%	33\%	0\%	0\%	7\%	6\%
Fruit juices and nectars	23\%	31\%	54\%	47\%	9\%	6\%	14\%	14\%	0\%	0\%	0\%	2\%	4\%	5\%
Margarines	42\%	40\%	32\%	38\%	9\%	6\%	17\%	15\%	0\%	0\%	0\%	1\%	0,5\%	0,3\%
Bread products	29\%	41\%	38\%	41\%	9\%	2\%	25\%	12\%	0\%	0\%	0\%	3\%	3\%	5\%
Ready-to-eat canned meals	27\%	48\%	46\%	39\%	9\%	2\%	18\%	9\%	0\%	0\%	0\%	1\%	4\%	8\%
Ready-to-eat fresh meals	28\%	31\%	61\%	54\%	3\%	2\%	7\%	12\%	0\%	0\%	0\%	0\%	4\%	4\%
Ready-to-eat frozen meals	15\%	22\%	35\%	34\%	2\%	2\%	14\%	12\%	34\%	30\%	0\%	0\%	9\%	6\%
Dessert mixes	42\%	71\%	24\%	20\%	0\%	0\%	34\%	9\%	0\%	0\%	0\%	0\%	1\%	1\%
Fresh dairy products and desserts	30\%	34\%	48\%	47\%	4\%	3\%	18\%	14\%	0\%	0\%	0\%	2\%	8\%	9\%
Fresh delicatessen products	23\%	19\%	59\%	60\%	7\%	4\%	12\%	16\%	0\%	0\%	0\%	1\%	6\%	7\%
Processed potato products	24\%	28\%	47\%	46\%	6\%	4\%	14\%	12\%	10\%	10\%	0\%	1\%	3\%	2\%
Hot sauces	28\%	32\%	53\%	49\%	3\%	3\%	16\%	14\%	0\%	0\%	0\%	3\%	1\%	2\%
Cold sauces	38\%	35\%	44\%	50\%	3\%	4\%	14\%	11\%	0\%	0\%	0\%	0\%	3\%	2\%
Syrups	26\%	46\%	54\%	43\%	6\%	2\%	13\%	9\%	0\%	0\%	0\%	1\%	2\%	2\%
Frozen snacking products	13\%	22\%	34\%	31\%	2\%	2\%	11\%	10\%	39\%	35\%	0\%	0\%	5\%	3\%
Frozen pastries and desserts	8\%	11\%	27\%	22\%	1\%	0,2\%	10\%	8\%	54\%	59\%	0\%	0\%	3\%	2\%
All categories combined	26\%	33\%	43\%	43\%	6\%	3\%	16\%	13\%	9\%	6\%	0,01\%	1\%	100\%	100\%

Annex 13: Change in the proportions of products by class of sweetening ingredients or ingredients conveying sweetness and by food category (27 categories monitored for changes)

Annex 14: Change in the proportions of products by class of sweetening ingredients or ingredients conveying sweetness and by type of brand ($\mathbf{2 7}$ food categories monitored for changes)

Annex 15: Change in the proportions of products by the number of classes of sweetening ingredients or ingredients conveying sweetness and by food category (27 categories monitored for changes)

Product category ($n=$ total number of products considered for changes, by product category)	Change in the proportion of products according to the number of classes of swetening ingredients or ingredients conveging sweetmess found in the ingredient lists (27 product categries monitored for changes)																							
	No sweetening ingredientsor ingredients conveyingsweetness sweetness			1 class			2 classes combined			3 clases combined			4 classes combined			5 clases combined			6 classes combined			7 classes combined		
	Baseline	Followw up	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	$: \begin{gathered} \text { Follow- } \\ \text { up } \end{gathered}$	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	$\underset{\substack{\text { Follow- } \\ \text { up }}}{ }$	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	$\begin{array}{\|l\|} \hline \text { Follow- } \\ \text { up } \\ \hline \end{array}$	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline ${ }^{\text {P }}$	$: \begin{gathered} \text { Follow } \\ \text { up } \end{gathered}$	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	$\left\|\begin{array}{c} \text { Fallow- } \\ \text { up } \end{array}\right\|$	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	$\stackrel{\text { Folow }}{\text { up }}$	$\begin{array}{\|c\|} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array}$	Baseline	Follow-	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$
	13\%	19\%	+5.5**	33\%	36\%	+3.5**	28\%	27\%	-1.7 ${ }^{+\cdots}$	15\%	12\%	3.7.0**	7\%	5\%	-2, $2 \times \cdots$	2\%	1\%	-1.0*	1\%	0,2\%	${ }^{-0.3}{ }^{+\cdots}$	0,1\%	0,1\%	-0.04
Crackers (Baseline: $\mathrm{n}=551$; Follow-up: $\mathrm{n}=1082$)	45\%	47\%	+2.5	26\%	26\%	+0.6	21\%	21\%	+0.01	${ }^{8 \%}$	5\%	-3.4*	1\%	1\%	+0.3	0\%	\%	0	0\%	0\%	0	\%	0\%	0
$\underset{\text { Ceneal bars }}{\text { (Baseline: }=:=169 ; \text { Follow-pp: }:=181 \text {) }}$	0\%	0\%	0	2\%	1\%	-0.7	${ }^{8 \%}$	6\%	-2.8	11\%	25\%	+13.6+**	34\%	50\%	${ }^{+16.0 * *}$	27\%	17\%	-10.1*	14\%	2\%	-12.5***	4\%	0,6\%	-3,6
	0\%	0,1\%	+0.1	19\%	27\%	+7,7**	37\%	38\%	+0.4	27\%	24\%	$2.8{ }^{*}$	13\%	10\%	-2,9*	4\%	1\%	${ }^{2.6 * *}$	0,2\%	0,2\%	-0.01	0,1\%	0,1\%	+0.04
	3\%	9\%	+5.6"*	24\%	27\%	+3.7*	58\%	52\%	-6.4**	12\%	10\%	-2.1	2\%	1\%	${ }^{-0.6}$	0,3\%\%	0,04\%	${ }^{-0.3}$	0\%	0\%	0	0\%	0\%	0
Soups and broths (Baseline: $\mathrm{n}=569$; Follow-up: $\mathrm{n}=788$)	35\%	41\%	+5.7*	37\%	38\%	+0.4	20\%	17\%	-3.3	5\%	3\%	1.5	2\%	1\%	1.1	0,2\%	0\%	-0.2	0\%	0\%	0	0\%	0\%	0
$\begin{gathered} \text { Breakfast cereals } \\ \text { (Baseline: } \mathrm{n}=332 \text {; Follow-up: } \mathrm{n}=659 \text {) } \\ \hline \end{gathered}$	2\%	9\%	${ }^{+7,3^{+\cdots \times}}$	35\%	29\%	-6.0	30\%	39\%	+8.7**	18\%	19\%	+0.9	11\%	3\%	-7.8***	4\%	1\%	2.9**	0,3\%	0\%	${ }^{-0.3}$	0\%	0\%	0
$\begin{aligned} & \text { Delicatessen meats } \\ & \text { (Baseline: } \mathrm{n}=1161 \text {; Follow-up: } \mathrm{n}=1722 \text {) } \end{aligned}$	11\%	16\%	+5.7\%*	41\%	37\%	$4.4{ }^{*}$	30\%	31\%	+0.7	17\%	15\%	-2.0	2\%	1\%	-0.5	0\%	0,2\%	+0.2	0\%	0\%	0	0\%	0\%	0
Chocolate products (Baseline: $\mathrm{n}=731 \mathrm{i}$; pollow-up: $\mathrm{n}=1013$)	1\%	1\%	+0.1	52\%	55\%	+2.9	31\%	28\%	-3.1	11\%	12\%	+1.0	4\%	3\%	-0.9	1\%	1\%	-0.01	0,4\%	0,4\%	-0.02	0,1\%	0,2\%	+0.1
Fruit purées, compotes and desserts (Baseline: $\mathrm{n}=480$; Follow-up: $\mathrm{n}=972$)	28\%	30\%	+2.3	55\%	58\%	+3.5	16\%	11\%	5.6"*	1\%	0,3\%	-0.3	0\%	\%\%	0	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
Jams (Baseline: $\mathrm{n}=337$; Follow-up: n=781)	\%	0\%	0	34\%	55\%	+20,9+*	58\%	41%	-17.1+*	7\%	4\%	3.0*	1\%	\%	-0,9	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
Canned fruits (Baseline: $\mathrm{n}=181$; Follow-up: $\mathrm{n}=245$)	0\%	0\%	0	51\%	71\%	+20.6**	46\%	28\%	-182\%*	${ }^{3 \%}$	0.4\%	-2,4	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
	0\%	0\%	0	1\%	2\%	+0.7	12\%	12\%	+0.7	35\%	39\%	+4.1*	33\%	32\%	-1.6	15\%	13\%	-2.2	4\%	2\%	1.7**	${ }^{0,2 \%}$	0.3\%	+0.1
Frititices and nectars (Baseline: $\mathrm{n}=816$; Follow up: $\mathrm{n}=1637$)	3\%	5\%	+2.2*	80\%	78\%	-1.7	14\%	15\%	+0.6	3\%	2\%	-1.2*	0,2\%	0,4\%	+0.1	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
Margarines (Baseline: $\mathrm{n}=95$; Follow-up: $\mathrm{n}=109$)	97\%	87\%	$9.7 *$	3\%	13\%	+9.7*	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0	0\%	\%	0	0\%	0\%	0
$\begin{gathered} \text { Bread products } \\ \text { (Baseline: } \mathrm{n}=584 \text {; Follow-up: } \mathrm{n}=1740 \text {) } \\ \hline \end{gathered}$	8\%	24\%	+16,9**	53\%	53\%	-0.1	30\%	19\%	112, ${ }^{2+\cdots}$	7\%	3\%	${ }^{4.8}{ }^{+0 \times}$	1\%	1\%	-0.1	1\%	\%\%	-0,7	0\%	0\%	0	0\%	0\%	0
Ready-to-eat canned meals (Baseline: $n=794$; Follow-up: $n=2672$)	23\%	46\%	+23.9..	45\%	35\%	10.6.*	25\%	15\%	10.5**	5\%	3\%	-1.8*	2\%	1\%	0.8. ${ }^{\text {. }}$	0,1\%	0\%	-0.1	0\%	0\%	0	0\%	0\%	0
	22\%	29\%	+6.3**	29\%	33\%	+9, ${ }^{\prime \prime}$	25\%	21\%	-3.9*	17\%	9\%	-7.5***	7\%	3\%	$4.4{ }^{\prime \cdots}$	0,3\%	0,4\%	+0.2	0\%	0,1\%	+0.1	0\%	0\%	0
Ready-to-eat frozen meals (Baseline: $n=1861$; Follow-up: $n=2108$)	28\%	41\%	+12.8.*	38\%	36\%	-2.1	19\%	16\%	-2.9*	11\%	5\%	5.7.0*	3\%	2\%	1.4**	1\%	0,2\%	-0.6*	0,1\%	0\%	-0.1	0\%	0\%	0
$\begin{gathered} \text { Dessert mixes } \\ \text { (Baseline: } \mathrm{n}=160 \text {; Follow-up: } \mathrm{n}=329 \text {) } \\ \hline \end{gathered}$	4\%	13\%	+9,3**	55\%	60\%	+4.6	28\%	21\%	-6.2	11\%	6\%	${ }^{-4.8}$	3\%	0,3\%	$-2,8$	0\%	0\%	0	0\%	0\%	0	\%\%	0\%	0
$\begin{gathered} \text { Fresh dairy products and desserts } \\ \text { (Baseline: } \mathrm{n}=1613 \text {; Follow-up: } \mathrm{n}=3115 \text {) } \end{gathered}$	11\%	16\%	${ }^{+4.4 * *}$	28\%	37\%	+9.5**	34\%	30\%	-4.0*	19\%	12\%	-7.3***	6\%	4\%	-2.3**	${ }^{1 \%}$	1\%	${ }^{-0.1}$	0,1\%	0,1\%	+0.004	${ }^{0,2 \%}$	\%\%	-0,2
Fresh delicatessen products (Baseline: $\mathrm{n}=1141$; Follow-up: $\mathrm{n}=2293$)	8\%	23\%	+15.1.*	24\%	26\%	+1.5	34\%	29\%	-4.9*	23\%	16\%	-7, ${ }^{+\cdots \cdots}$	9\%	5\%	-3.7\%*	1\%	1\%	-0.8*	0,1\%	0,04\%	-0.04	0\%	0\%	0
$\begin{gathered} \text { Processed potato products } \\ \text { (Baseline: } \mathrm{n}=683 \text {; Follow-up: } \mathrm{n}=791 \text {) } \end{gathered}$	57\%	51\%	-6.6*	32\%	42\%	${ }^{+10.3}+$	${ }^{8 \%}$	6\%	-2.0	2\%	1\%	-1.2	1\%	\%	-0,6	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
Hot sauces (Baseline: $\mathrm{n}=295$; Follow-up: $\mathrm{n}=609$)	6\%	19\%	${ }_{+12.3}+\cdots$	71\%	59\%		17\%	16\%	-0.7	5\%	5\%	+0.2	1\%	1\%	+0.6	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
$\begin{gathered} \text { Cold sauces } \\ \text { (Baseline: } \mathrm{n}=544 \text {; Follow-up: } \mathrm{n}=623 \text {) } \\ \hline \end{gathered}$	11\%	6\%	-5.3**	37\%	39\%	+2.0	44\%	44\%	-0.7	6\%	9\%	+3.3*	1\%	2\%	+0.6	0\%	0\%	0	0\%	0\%	0	0\%	0\%	0
Syrups (Baseline: $\mathrm{n}=316$; Follow-up: $\mathrm{n}=681$)	1\%	1\%	-0.4	10\%	15\%	+4.7*	39\%	56\%	+17.2**	47\%	25\%	-21,9*	3\%	3\%	+0.4	\%\%	0\%	0	0\%	\%	0	0\%	\%	0
Frozen snacking products (Baseline: $\mathrm{n}=930$; Follow-up: $\mathrm{n}=1147$)	12\%	13\%	+0.7	26\%	33\%	${ }^{+6.3{ }^{* *}}$	32\%	35\%	+2.8	17\%	12\%	5.4***	${ }^{8 \%}$	5\%	-3.1*	4\%	2\%	-1.5*	0,1\%	0,3\%	+0.2	0\%	0,1\%	+0.1
Frozen pastries and desserts (Baseline: $\mathrm{n}=571$; Follow-up: $\mathrm{n}=608$)	1\%	0,5\%	-0.03	24\%	28\%	+3.6	32\%	30\%	-1.8	23\%	23\%	-0.3	14\%	12\%	-2.2	4\%	5\%	+0.4	1\%	1\%	-0.2	0,5\%	1\%	+0.5

Annex 16: Change in the proportions of products by the number of classes of sweetening ingredients or ingredients conveying sweetness and by type of brand (27 food categories monitored for changes)

Type of brand ($n=$ total number of products considered for changes, by type of brand)	proportion of products according to the number of classes of sweetening ingredients or ingredients conveying sweetness found in the ingredient lists (27 product categories monitored for changes)																							
	No sweetening ingredients or ingredients conveying sweetness			1 class			2 classes combined			3 classes combined			4 classes combined			5 classes combined			6 classes combined			7 classes combined		
	Baseline	Follow-up	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	Follow-up	Change in the proportions (point)	Baseline	Follow-up	$\begin{array}{\|c} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array}$	Baseline	Follow-up	Change in the proportions (point)	Baseline	Follow-up	$\begin{array}{\|c\|} \begin{array}{c} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array} \\ \hline \end{array}$	Baseline	Follow-up	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	Follow-up	$\begin{gathered} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{gathered}$	Baseline	Follow-up	Change in the proportions (point)
All products combined (Baseline: $\mathrm{n}=19723$; Follow-up: $\mathrm{n}=34737$)	13\%	19\%	+5.5***	33\%	36\%	+3.5***	28\%	27\%	-1.7***	15\%	12\%	-3.7***	7\%	5\%	$-2.2^{* * *}$	2\%	1\%	-1.0***	1\%	0,2\%	-0.3***	0,1\%	0,1\%	-0.04
National brands (Baseline: $\mathrm{n}=5089$; Follow-up: $\mathrm{n}=11532$)	14\%	20\%	+6.4***	35\%	37\%	+2.2**	29\%	27\%	-2.2**	13\%	11\%	$-2.3 * * *$	6\%	4\%	-2.3***	2\%	1\%	-1.5***	1\%	0,2\%	-0.4***	0,02\%	0,1\%	+0.04
$\left.\begin{array}{c}\text { Retailer brands } \\ \text { (Baseline: } \mathrm{n}=8507 \text {; Follow-up: } \mathrm{n}=15075 \text {) }\end{array}\right)$.	13\%	18\%	+4.9***	33\%	38\%	+4.2***	29\%	27\%	-1.6**	16\%	11\%	-4.5***	6\%	4\%	-1.9***	2\%	1\%	${ }^{0.8}{ }^{* * *}$	0,4\%	0,2\%	-0.3***	0,1\%	0,03\%	${ }^{-0.05}$
Entry-level retailer brands (Baseline: $\mathrm{n}=1117$; Follow-up: $\mathrm{n}=1120$)	13\%	17\%	+4.0**	33\%	36\%	+2.3	31\%	27\%	-3.6	16\%	14\%	-1.9	5\%	5\%	-0.1	1\%	1\%	-0.3	0,2\%	0\%	-0.2	0,4\%	0,1\%	-0.3
$\begin{gathered} \text { Hard discount } \\ \text { (Baseline: } \mathrm{n}=3158 \text {; Follow-up: } \mathrm{n}=4361 \text {) } \end{gathered}$	12\%	16\%	+3.7***	33\%	36\%	+3.3**	30\%	29\%	-1.1	15\%	13\%	-1.9*	8\%	5\%	$-2.8 * * *$	2\%	1\%	-0.7*	1\%	0,2\%	${ }^{0.3 * *}$	0,1\%	0\%	-0,1
Specialised retailer brands ${ }^{1}$ (Baseline: n=1851; Follow-up: n=2185)	15\%	19\%	+3.9***	24\%	24\%	+0.5	21\%	19\%	-2.1	21\%	18\%	2.7*	12\%	12\%	+0.2	6\%	6\%	+0.1	1\%	1\%	-0.1	0,1\%	0,3\%	+0.2

1. s. specialised reailier bra
the other types sf frands.

Annex 17: Numbers and proportions of paired products by food category and type of brand (among the 27 categories studied in the part on changes)

	National brands		Retailer brands		Entry-level retailer brands		Hard discount		Specialised retailer brands		Specialised organic retailer brands		All types of brands combined	
	Numbers of products	Proportions of products												
Crackers	47	12\%	197	52\%	38	10\%	100	26\%	0	0\%	0	0\%	382	4\%
Cereal bars	22	27\%	39	47\%	12	14\%	10	12\%	0	0\%	0	0\%	83	1\%
Cakes and biscuits	143	21\%	325	48\%	56	8\%	152	22\%	0	0\%	0	0\%	676	6\%
Soft drinks	118	30\%	220	56\%	23	6\%	33	8\%	0	0\%	1	0,3\%	395	4\%
Soups and broths	123	41\%	113	38\%	15	5\%	47	16\%	0	0\%	0	0\%	298	3\%
Breakfast cereals	47	31\%	72	48\%	3	2\%	29	19\%	0	0\%	0	0\%	151	1\%
Delicatessen meats	65	9\%	433	58\%	98	13\%	150	20\%	0	0\%	0	0\%	746	7\%
Chocolate products	168	36\%	142	30\%	34	7\%	122	26\%	0	0\%	0	0\%	466	4\%
Fruit purées, compotes and desserts	82	36\%	118	51\%	12	5\%	18	8\%	0	0\%	0	0\%	230	2\%
Jams	61	26\%	146	61\%	6	3\%	26	11\%	0	0\%	0	0\%	239	2\%
Canned fruits	22	23\%	44	45\%	17	18\%	14	14\%	0	0\%	0	0\%	97	1\%
Ice-creams and sorbets	105	13\%	313	38\%	21	3\%	93	11\%	294	36\%	0	0\%	826	8\%
Fruit juices and nectars	88	16\%	313	59\%	50	9\%	83	16\%	0	0\%	0	0\%	534	5\%
Margarines	29	38\%	29	38\%	5	6\%	14	18\%	0	0\%	0	0\%	77	1\%
Bread products	72	22\%	160	48\%	24	7\%	75	23\%	0	0\%	0	0\%	331	3\%
Ready-to-eat canned meals	81	20\%	235	59\%	20	5\%	60	15\%	0	0\%	0	0\%	396	4\%
Ready-to-eat fresh meals	77	22\%	242	70\%	9	3\%	19	5\%	0	0\%	0	0\%	347	3\%
Ready-to-eat frozen meals	42	6\%	354	48\%	20	3\%	96	13\%	233	31\%	0	0\%	745	7\%
Dessertmixes	39	48\%	26	32\%		0\%	17	21\%	0	0\%	0	0\%	82	1\%
Fresh dairy products and desserts	170	22\%	447	58\%	30	4\%	122	16\%	0	0\%	0	0\%	769	7\%
Fresh delicatessen products	94	16\%	359	61\%	46	8\%	91	15\%	0	0\%	0	0\%	590	6\%
Processed potato products	70	16\%	245	56\%	23	5\%	48	11\%	51	12\%	0	0\%	437	4\%
Hot sauces	46	25\%	104	57\%	7	4\%	26	14\%	0	0\%	0	0\%	183	2\%
Cold sauces	102	28\%	203	55\%	14	4\%	49	13\%	0	0\%	0	0\%	368	3\%
Syrups	43	22\%	118	61\%	11	6\%	23	12\%	0	0\%	0	0\%	195	2\%
Frozen snacking products	69	13\%	175	33\%	12	2\%	45	8\%	230	43\%	0	0\%	531	5\%
Frozen pastries and desserts	18	5\%	102	27\%	1	0,3\%	21	6\%	233	62\%	0	0\%	375	4\%
All categories combined	2043	19\%	5274	50\%	607	6\%	1583	15\%	1041	10\%	1	0\%	10549	100\%

Annex 18：Change in the proportions of paired products according to the class of sweetening ingredients or ingredients conveying sweetness，by food category and type of brand（27 categories monitored for changes）

Product category （ $\mathrm{n}=$＝total number of products considered for the pairs，all paired products combined，by product category and by type of brand）																																				
	All casses combined			Surose			Ssups			${ }^{\text {ofters measa＇}}$			Latase			Fantifices nad coneratraes			${ }_{\text {cranel }}$						Bulsweemers			Inenese meeteress			Honey					
	Baseline		$\begin{aligned} & \text { Change in the } \\ & \text { proportions } \\ & \text { (point) } \end{aligned}$			$\begin{array}{\|c\|} \hline \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array}$									$\begin{array}{\|c} \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array}$	Esatine					$\begin{array}{\|c\|} \hline \text { Change in the } \\ \text { proportions } \\ \text { (point) } \end{array}$	Bastine ${ }^{\text {a }}$			mentre											
	${ }^{86 \%}$	${ }^{\text {85\％}}$	． 0.5	${ }_{62 \%}$	62\％	${ }^{0.3}$	32\％	28\％	－ 3.9 ．＂．	25\％	23\％	－27\％	20\％	17\％	3.6 ．${ }^{\text {a }}$	18\％	20\％	＋1，	\％	6\％	$13^{13 \times}$	4\％	3\％	． 0.5	3\％	2%	${ }^{.03}$	2\％	2\％	＋0．	${ }^{2 \%}$	2\％	${ }^{0.1}$	0，3\％	0，2\％	${ }_{0}^{0.1}$
	51\％	${ }^{52 \%}$	${ }^{1.0}$	31\％	${ }^{31 \%}$	。	${ }^{19 \%}$	19\％	－	20\％	17\％	29	${ }^{14 \%}$	${ }^{10 \%}$	${ }^{3.7}$	${ }^{1 \%}$	1\％	。	${ }^{1 \%}$	2\％	＋0．3	${ }^{1 \%}$	${ }_{0}^{0,3 \%}$	${ }^{0.3}$	${ }^{3 \%}$	3\％	${ }^{* 0.3}$	\％	\％\％	\bigcirc	${ }^{1 \%}$	${ }^{1 \%}$	－	\％\％	\％\％	\bigcirc
	109\％	${ }^{\text {100\％}}$	－	${ }^{100 \% \%}$	100\％	\bigcirc	98\％	98\％	\bigcirc	${ }^{79 \%}$	${ }^{72 \%}$	${ }_{6} 6$	${ }_{10 \%}$	5\％	10．9．	${ }^{13 \%}$	11\％	24	27%	6\％	${ }^{20.5 .}$	${ }_{14 \%}$	${ }^{11 \%}$	${ }^{3.6}$	${ }_{73 \%}$	${ }_{82 \%}$	＊8．	\％	\％	0	${ }^{25 \%}$	\％	．193．＊＊	\％	\％	－
	100%	${ }^{\text {100\％}}$	－	${ }_{98 \%}$	99\％	＋0．9	56\％	56\％	${ }^{-0.6}$	${ }^{22 \%}$	${ }^{16 \%}$	．58＊	24%	${ }^{18 \%}$	${ }_{\text {c }}^{8 \times}$	9\％	${ }^{10 \%}$	＋12	4\％	2\％	22^{*}	8\％	\％	\bigcirc	${ }^{17 \%}$	${ }^{13 \%}$	${ }_{3} 3^{*}$	0，1\％	${ }^{0.1 \%}$	。	\％\％	${ }^{3 \%}$	${ }^{0.6}$	0，3\％	\％	${ }^{0.3}$
	97%	9\％\％	${ }^{-10}$	${ }_{69 \%}$	71\％	${ }^{2} 2.8$	${ }^{19 \%}$	6\％	${ }^{13,4 \%}$	${ }^{3 \%}$	3\％	＋0．5	\％	\％	0	52\％	50\％	20	22\％	${ }^{21 \%}$	${ }^{-0.8}$	0，3\％	0\％	${ }^{0.3}$	\％	\％	\bigcirc	29\％\％	${ }^{34 \%}$	45.3	1\％	${ }^{1 \%}$	${ }^{0.5}$	0．3\％	\％\％	${ }^{0.3}$
	6\％\％	6\％\％	${ }^{1.7}$	${ }_{45 \%}$	50\％	＋5．7	20%	23\％	${ }^{3.4}$	6\％	4\％	${ }^{2.0}$	${ }_{19 \%}$	${ }^{13 \%}$	${ }^{-57}$	\％	8\％	${ }^{1.3}$	4\％	2%	${ }^{2.0}$	${ }^{1 \%}$	${ }^{1 \%}$	－	\％	\％	－	\％	\％	－	\％	\％	0	\％	\％	\bigcirc
	99\％	99\％	0	99\％6	99\％6	${ }^{-0.7}$	40%	${ }_{42 \%}$	${ }_{1}+1$	${ }_{19 \%}$	\％	${ }^{12.6 .}$	${ }^{3 \%}$	2\％	${ }^{0.7}$	\％	${ }^{1 \%}$	＋0．7	${ }^{13 \%}$	1\％	11，${ }^{\text {，}}$	3\％	7\％	${ }^{4.0}$	\％	\％	－	\％	\％	－	${ }^{24 \%}$	${ }^{18 \%}$	－	${ }^{3 \%}$	\％	${ }^{2.6}$
	${ }_{90 \%}$	9\％\％	＋0．5	${ }^{29 \%}$	29\％	${ }^{1.1}$	$2{ }^{20 \%}$	22\％	＋2．1	${ }^{71 \%}$	${ }^{20 \%}$	${ }^{1.7}$	${ }^{30 \%}$	27\％	${ }^{24}$	\％	\％	－	${ }_{8 \%}$	${ }_{3}$	＋0．4	0\％	\％	\bigcirc	${ }^{0.1 \%}$	\％	${ }^{0.1}$	\％	\％	－	0，4\％	${ }_{0}^{0.4 \%}$	\bigcirc	\％	\％	－
	99，0\％\％	99，0\％	0	9\％\％	99\％	－	${ }^{10 \%}$	${ }^{15 \%}$	${ }^{1.3}$	${ }_{14 \%}$	${ }^{12 \%}$	${ }^{1.9}$	21%	${ }^{21 \%}$	＋0．4	1\％	${ }^{1 \%}$	－	0．2\％	0．4\％	＊0．2	${ }^{8 \%}$	10\％	＊2．4	3\％	3\％	－	${ }^{1 \%}$	1\％	－	2%	${ }^{3 \%}$	＋0．2	0．2\％	02\％	－
	${ }^{73 \%}$	${ }^{77 \%}$	${ }^{4.3}$	70\％	70\％	－	${ }^{14 \%}$	2\％	${ }^{122 \cdots}$	${ }_{0}^{0,4 \%}$	\％	${ }^{0.4}$	\％	\％	\bigcirc	5\％	16\％	＋10，${ }^{\text {a }}$	\％	\％	－	\％	\％	0	\％	\％	－	\％	\％	。	\％	\％	。	\％	\％	－
	${ }^{100 \%}$	${ }^{\text {100\％}}$	－	98\％	98\％	＋0．4	${ }^{25 \%}$	13\％	${ }^{12} 2 . \cdots$	${ }^{13 \%}$	2\％	10．5．	\％	\％\％	－	${ }^{31 \%}$	28\％	21	0，4\％	0．4\％	－	\％\％	0，4\％	＋0．4	0，4\％	0，4\％	－	\％	\％	\bigcirc	\％	\％	\bigcirc	\％	\％	－
	100\％\％	${ }^{\text {100\％}}$	\bigcirc	${ }^{87 \%}$	${ }^{89 \%}$	＋1．0	${ }_{41 \%}$	35\％	${ }^{62}$	\％	\％	0	\％	\％	－	${ }^{19 \%}$	15\％	21	\％	\％	－	\％	\％	－	\％	\％	－	\％	\％	－	\％	\％	－	\％	\％	－
	${ }^{100 \%}$	100%	－	${ }_{98 \%}$	99\％	＊． 5	95\％	9\％	${ }^{0.6}$	${ }^{34 \%}$	${ }^{23 \%}$	${ }^{111, \ldots}$	22\％	6\％\％	${ }^{4.1}$	26%	27\％	＋0．6	19\％	${ }_{19 \%}$	${ }^{0.1}$	16\％	${ }^{13 \%}$	${ }^{3.4}$	${ }^{2 \%}$	${ }^{1 \%}$	．0．2	0．5\％	0，4\％	${ }^{0.1}$	${ }^{3 \%}$	3\％	＋0．7	${ }^{1 \%}$	${ }^{1 \%}$	\bigcirc
	97\％	97\％	＋0．4	${ }^{17 \%}$	${ }^{19 \%}$	＋2．1	${ }_{8}{ }^{\text {\％}}$	5\％	${ }^{24}$	02\％	\％	．0．2	\％\％	\％	－	9\％\％	91\％	＋0．6	\％	\％	－	0\％	\％	－	\％	\％	－	2\％	3\％	＋0．7	\％	\％	－	\％	\％	－
	4\％	${ }^{\text {\％}}$	＋3．9	\％	\％	\bigcirc	\％	\％	0	\％	\％	\bigcirc	\％	\％	\bigcirc	${ }_{4 \%}$	8\％	＋3．9	\％	\％	－	\％	\％	－	\％	\％	－	\％\％	\％	0	\％	\％	－	\％	\％	－
	96%	96\％	＊0．3	${ }^{\text {a5\％}}$	${ }^{87 \%}$	＊2．1	26%	${ }^{19 \%}$	${ }^{6} 9$	${ }^{21 \%}$	${ }^{11 \%}$	10．6．＊	${ }^{\text {\％}}$	4\％	45°	${ }^{\text {1\％}}$	8\％	${ }^{6} 6.6$	0，3\％\％	0，3\％	－	${ }^{1 \%}$	${ }^{\text {\％}}$	${ }^{0.6}$	${ }^{\text {\％}}$	0，3\％\％	${ }^{0.6}$	\％	\％	－	${ }^{\text {\％}}$	${ }^{\text {1\％}}$	。	\％	\％	－
	79\％	72\％	${ }^{-78}{ }^{\text {a }}$	${ }_{50 \%}$	${ }_{46 \%}$	${ }^{3.3}$	${ }^{14 \%}$	${ }^{14 \%}$	\bigcirc	${ }^{19 \%}$	${ }_{14 \%}$	4.5	${ }^{16 \%}$	\％	9，	${ }^{14 \%}$	16\％	${ }^{2} 2$	6\％	3\％	${ }^{28}$	${ }^{1 \%}$	${ }^{\text {0．3\％}}$	．0．3	0，3\％	\％	${ }^{.0 .3}$	\％	\％	－	0．3\％	${ }^{\text {0，3\％}}$	\bigcirc	\％	\％	－
	${ }^{74 \%}$	71\％	${ }^{3} .5$	44%	${ }^{42 \%}$	$\stackrel{20}{ }$	${ }^{17 \%}$	${ }^{14 \%}$	${ }^{3.7}$	${ }^{39 \%}$	${ }^{33 \%}$	${ }^{5} 8$	27\％	${ }^{16 \%}$	110．0．	10\％	${ }^{12 \%}$	＋2， 9	${ }^{12 \%}$	7\％	${ }^{4.6}$	2\％	${ }^{1 \%}$	${ }^{0.6}$	\％	\％	－	\％	\％	－	1\％	${ }_{3 \%}$	${ }^{1.7}$	\％\％	\％	－
	${ }_{69 \%}$	${ }_{64 \%}$	4.4	${ }^{34 \%}$	27%	${ }_{7} \cdot 8^{\circ}$	${ }^{10 \%}$	10\％	${ }^{-0.8}$	${ }^{31 \%}$	${ }^{29 \%}$	2.0	${ }^{20 \%}$	10\％	9.4	${ }^{10 \%}$	17\％	＊6，${ }^{\text {a }}$	\％	${ }_{4}^{6}$	${ }^{3.8{ }^{\text {a }}}$	1\％	${ }^{1 \%}$	${ }^{0.4}$	\％	\％	－	\％	\％	－	2\％	2\％	＊0．3	\％	\％	－
	9\％\％	94\％	－	93\％	${ }^{\text {93\％}}$	\bigcirc	${ }^{17 \%}$	9%	－8．5	6\％	9%	＋2．4	${ }^{10 \%}$	7\％	${ }^{2.4}$	＊\％	2%	1.2	7%	7\％	。	4\％	${ }^{\text {\％}}$	${ }^{24}$	1\％	2\％	41.2	\％	\％	－	\％\％	\％	－	＊\％	4\％	－
	84%	${ }^{83 \%}$	${ }^{1.2}$	75\％\％	76%	${ }^{0.5}$	${ }^{37 \%}$	25\％	${ }^{114 .}$	${ }^{7 \%}$	6\％	${ }^{1.6}$	${ }^{25 \%}$	${ }^{24 \%}$	${ }^{1.6}$	7\％	${ }^{8 \%}$	${ }^{12}$	${ }^{8 \%}$	${ }^{\text {5\％}}$	3.4	6\％	${ }^{3 \%}$	3.00	${ }^{1 \%}$	${ }^{1 \%}$	＋0．4	6\％	5\％	${ }^{.0 .3}$	0．1\％	${ }^{0.36 \%}$	＋0．1	0.45	${ }^{0.36}$	${ }^{0.1}$
	9\％\％	${ }^{86 \%}$	${ }^{3.7}$	5\％\％	${ }^{52 \%}$	49	${ }^{33 \%}$	25\％	\％ 8 \％	51\％	55\％	＋4．1	27\％	${ }^{20 \%}$	${ }_{6}^{6.8}$	17\％	19\％	＋1，	\％	5\％	22	${ }^{1 \%}$	\％	${ }^{-0.8}$	${ }^{5 \%}$	4\％	${ }^{0.8}$	0\％	\％	－	${ }^{1 \%}$	${ }^{1 \%}$	． 0.2	0．2\％	\％	${ }^{0.2}$
	${ }_{44 \%}$	${ }_{5 \%}$	＋5．7	${ }^{11 \%}$	${ }_{10 \%}$	${ }^{-0.7}$	2\％	2\％	＊0．2	${ }_{34 \%}$	${ }^{39 \%}$	${ }^{4.6}$	${ }_{5 \%}$	＊\％	${ }^{0.5}$	\％	\％	0	2\％	${ }^{\text {\％}}$	${ }^{1.4}$	\％	\％	－	\％	\％	－	${ }^{3 \%}$	1\％	${ }_{1.18}{ }^{\circ}$	0\％	\％	－	\％\％	\％\％	－
	${ }_{94 \%}$	96\％	＋22	${ }^{\text {85\％}}$	${ }^{87 \%}$	＋22	\％	${ }^{14 \%}$	＋6．6＊	${ }^{3 \%}$	6\％	＋2．7	${ }^{13 \%}$	3\％	．93＊	${ }^{10 \%}$	15\％	＋5．5	6\％	5\％	${ }^{1.1}$	\％	${ }^{1 \%}$	＊0．5	\％	\％	－	\％	\％	－	\％	\％	－	0\％	\％	－
	${ }_{93 \%}$	93\％	－	6\％\％	70\％	${ }^{* 3.8}$	${ }^{29 \%}$	22\％	${ }^{6.0}$	${ }^{12 \%}$	${ }^{12 \%}$	＊0．3	1\％	2\％	＊0．8	39\％	44\％\％	${ }^{4.9}$	${ }^{12 \%}$	10\％	${ }^{-1.6}$	\％	\％	0	\％	\％	－	2\％	2\％	－	1\％	${ }^{\text {\％}}$	－	\％	\％	－
	${ }_{99 \%}$	${ }_{98 \%}$	－	${ }^{22 \%}$	77\％	＋5．1	${ }_{75 \%}$	${ }_{42 \%}$	${ }_{33, \cdots}$	\％	0\％	－	\％	\％	－	${ }^{74 \%}$	${ }_{74 \%}$	－	${ }^{5 \%}$	${ }_{12 \%}$	＋13，＊＊	0\％	\％	－	\％	\％	－	${ }^{10 \%}$	${ }^{10 \%}$	－	\％	\％	\bigcirc	\％\％	\％	－
	${ }^{89 \%}$	87\％	${ }^{0.6}$	${ }_{50 \%}$	${ }_{47 \%}$	${ }^{32}$	${ }^{33 \%}$	${ }^{29 \%}$	${ }^{47}$	${ }_{54 \%}$	${ }_{52 \%}$	${ }^{23}$	27%	25\％	${ }^{2.6}$	${ }^{15 \%}$	${ }_{14 \%}$	${ }^{0.8}$	${ }_{5 \%}$	4\％	${ }^{.0 .8}$	${ }^{1 \%}$	${ }^{1 \%}$	．0．2	${ }^{1 \%}$	${ }^{1 \%}$	－	\％	02\％	＋0．2	${ }^{3}$	3\％	＋0．2	\％	\％	－
	${ }^{86 \%}$	${ }^{86 \%}$	\bigcirc	${ }_{68 \%}$	${ }_{68 \%}$	＊0．2	${ }^{298 \%}$	26\％	${ }^{1.4}$	${ }^{16 \%}$	15\％	${ }^{1.6}$	${ }^{17 \%}$	${ }^{14 \%}$	3，6＂	${ }^{20 \%}$	${ }^{22 \%}$	＋22	\％\％	6\％	${ }^{1.1}$	5\％	${ }^{4 \%}$	${ }^{\text {．0．}}$	${ }^{3 \%}$	2%	${ }^{-0.4}$	${ }^{3 \%}$	${ }^{4 \%}$	＋0．9	${ }^{2 \%}$	2%	＊0．	0，3\％	0．1\％	${ }^{0.2}$
	${ }^{\text {a5\％}}$	84\％	－0．9	${ }_{60 \%}$	${ }_{60 \%}$	${ }^{-0.5}$	${ }^{30 \%}$	${ }^{24 \%}$	． $5.5 \cdots$	$2{ }^{26 \%}$	${ }^{22 \%}$	${ }^{3} 2 \times \cdots$	${ }^{19 \%}$	${ }^{15 \%}$	${ }_{4}^{4} 2^{\prime \cdots}$	${ }^{19 \%}$	${ }^{20 \%}$	${ }^{+1.6}$	\％	6\％	${ }_{14 *}$	${ }^{3 \%}$	2%	${ }^{.0 .4}$	3\％	2\％	－0．2	${ }^{2 \%}$	2\％	${ }^{0.1}$	${ }^{1 \%}$	${ }^{1 \%}$	${ }^{0.3}$	0，2\％	${ }^{\text {0．3\％}}$	－
	${ }_{86 \%}$	${ }^{86 \%}$	${ }^{.0 .7}$	5\％\％	5\％	＋0．7	${ }^{33 \%}$	29\％	4.0	${ }^{29 \%}$	${ }^{28 \%}$	${ }^{1.0}$	${ }^{19 \%}$	17\％	${ }^{2} 2.5$	${ }^{15 \%}$	${ }^{15 \%}$	0.2	5\％	5\％	${ }^{.0 .7}$	${ }^{1 \%}$	0．5\％	． 0.5	${ }^{4 \%}$	3\％	${ }^{-0.5}$	${ }_{4 \%}$	5\％	＋1	${ }^{1 \%}$	${ }^{1 \%}$	． 0.5	0，2\％	\％\％	${ }^{0.2}$
	${ }^{86 \%}$	8\％\％	0	${ }_{63 \%}$	${ }_{64 \%}$	＊0．4	${ }^{33 \%}$	29\％\％	3，	27%	24%	${ }^{3.1}$	${ }^{22 \%}$	20\％	${ }^{2.6}$	${ }^{13 \%}$	${ }^{15 \%}$	＋1．7	\％	5\％	${ }^{1.3}$	4\％	3\％	${ }^{-0.5}$	3\％	3\％	${ }^{-0.3}$	${ }^{1 \%}$	1\％	${ }^{0.3}$	${ }^{\text {\％}}$	${ }^{1 \%}$	${ }^{0.4}$	0，3\％	0．1\％	${ }^{-0.2}$
	${ }^{87 \%}$	8\％\％	${ }^{0.6}$	$6{ }^{6}$	${ }_{64 \%}$	${ }^{1.5}$	47%		0.9	3\％\％	${ }_{35 \%}$	${ }^{3.3}$	27%	24\％	3.0	$20 \% 6$	22\％	＋22	\％	6\％	${ }^{1.5}$	\％	\％	${ }^{0.3}$	1\％	${ }^{1 \%}$	${ }^{-0.1}$	10.3%	03\％	－	${ }_{3 \%}$	${ }^{3 \%}$	＋0．6	${ }^{1 \%}$	0．5\％	${ }^{0.1}$

[^23]
REFERENCES

Acton, R. B., L. Vanderlee, E. P. Hobin, et D. Hammond. 2017. "Added sugar in the packaged foods and beverages available at a major Canadian retailer in 2015: a descriptive analysis." CMAJ Open 5 (1):E1-E6. doi: 10.9778/cmajo. 20160076.
Administration française. 2018. "Taxation des boissons." Consulté le 24/08/2018. https://www.service-public.fr/professionnels-entreprises/vosdroits/F32101.

AFFSA. 2002. "Rapport de l'Agence française de Sécurité Sanitaire des Aliments sur la question d'un éventuel lien entre exposition à l'aspartame et tumeurs du cerveau."

ANSES. 2015. "Avis de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail du 19 novembre 2014 révisé le 9 janvier 2015 relatif à l'évaluation des bénéfices et des risques nutritionnels des édulcorants intenses."

ANSES. 2016. "Actualisation des repères du PNNS : établissement de recommandations d'apport de sucres."

ANSES. 2017. "Étude individuelle nationale des consommations alimentaires 3 (INCA3)."
Beltra, M., H. Tomas, J. C. Lopez, F. Borras, et A. B. Ropero. 2022. "Nutritional Description of Foods with Low- and No-Calorie Sweeteners in Spain: The BADALI Project." Nutrients 14 (13). doi: 10.3390/nu14132686.

Carrillo, E., P. Varela, et S. Fiszman. 2012. "Influence of nutritional knowledge on the use and interpretation of Spanish nutritional food labels." J Food Sci 77 (1):H1-8. doi: 10.1111/j.1750-3841.2011.02479.x.

IARC-JECFA. 2023. "Résumé des résultats de l'évaluation de l'aspartame lors de la Réunion 134 du programme des Monographies du Centre international de Recherche sur le Cancer (IARC) du 6 a 13 juin 2023 et de la 96e réunion du COMITE MIXTE FAO/OMS D'EXPERTS DES ADDITIFS ALIMENTAIRES du 27 juin au 6 juillet 2023."

IARC. 2023. "Résumé des résultats de l'évaluation de l'aspartame lors de la Réunion 134 du programme des Monographies du Centre international de Recherche sur le Cancer (IARC) du 6 a 13 juin 2023 et de la 96e réunion du COMITE MIXTE FAO/OMS D'EXPERTS DES ADDITIFS ALIMENTAIRES du 27 juin au 6 juillet 2023."

Commission, Union Européenne. 2008. "Règlement (CE) n ${ }^{\circ}$ 889/2008 de la Commission du 5 septembre 2008 portant modalités d'application du règlement (CE) $\mathrm{n}^{\circ} 834 / 2007$ du Conseil relatif à la production biologique et à l'étiquetage des produits biologiques en ce qui concerne la production biologique, l'étiquetage et les contrôles." Journal officiel de l'Union européenne L250 du 18 septembre 2008 CE/834/2008:1-84.

Commission, Union Européenne. 2011. Règlement (UE) nº 1131/2011 de la commission du 11 novembre 2011 modifiant l'annexe II du reglement (CE) 1333/2008 du Parlement européen et du Conseil en ce qui concerne les glycosides de stéviol. Dans Journal officiel de l'Union européenne. Bruxelles, Belgique.

Cowburn, Gill, et Lynn Stockley. 2007. "Consumer understanding and use of nutrition labelling: a systematic review." Public Health Nutr 8 (01). doi: 10.1079/phn2004666.

Dunford, E. K., L. S. Taillie, D. R. Miles, H. Eyles, L. Tolentino-Mayo, et S. W. Ng. 2018. "NonNutritive Sweeteners in the Packaged Food Supply-An Assessment across 4 Countries." Nutrients 10 (2). doi: 10.3390/nu10020257.

Erickson, J., et J. Slavin. 2015. "Are restrictive guidelines for added sugars science based?" Nutr J 14:124. doi: 10.1186/s12937-015-0114-0.

European Food Safety Authority, EFSA. 2013. "Scientific Opinion on the re-evaluation of aspartame (E 951) as a food additive." EFSA Journal 11 (12). doi: 10.2903/j.efsa.2013.3496.

European Food Safety Authority, EFSA. 2018. "Protocol for the scientific opinion on the Tolerable Upper Intake Level of dietary sugars." EFSA Journal 16 (8). doi: 10.2903/j.efsa.2018.5393.

Eurostat. 2019. "Overweight and obesity - BMI statistics." http://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Overweight and obesity - BMI statistics.

Food and Drug Administration, Department of Health and Human Services. 2014. Food Labelling: Revision of the Nutrition and Supplement Facts Labels; Proposed Rule. Dans Federal Register.

Food and Drug Administration, Department of Health and Human Services. 2018. Food Labeling: Revision of the Nutrition and Supplement Facts Labels and Serving Sizes of Foods That Can Reasonably Be Consumed at One Eating Occasion; Dual-Column Labeling; Updating, Modifying, and Establishing Certain Reference Amounts Customarily Consumed; Serving Size for Breath Mints; and Technical Amendments; Extension of Compliance Dates Dans Federal Register.

Goglia, R., M. Spiteri, C. Menard, C. Dumas, P. Combris, B. Labarbe, L. G. Soler, et J. L. Volatier. 2010. "Nutritional quality and labelling of ready-to-eat breakfast cereals: the contribution of the French observatory of food quality." Eur J Clin Nutr 64 Suppl 3:S205. doi: 10.1038/ejen.2010.205.

Gouvernement français. 2009. "Arrêté du 26 août 2009 relatif à l'emploi du rébaudioside A (extrait de Stevia rebaudiana) comme additif alimentaire." Journal officiel "Lois et Décrets" ${ }^{\circ} 0206$.

Menard, C., C. Dumas, N. Gillot, L. Laurent, B. Labarbe, J. Ireland, et J. L. Volatier. 2012. "The French OQALI survey on dairy products: comparison of nutrient contents and other nutrition information on labels among types of brands." J Hum Nutr Diet 25 (4):323-33. doi: 10.1111/j.1365-277X.2012.01235.x.

Menard, C., C. Dumas, R. Goglia, M. Spiteri, N. Gillot, P. Combris, J. Ireland, L. G. Soler, et J. L. Volatier. 2011. "OQALI: A French database on processed foods." Journal of Food Composition and Analysis 24 (4-5):744-749. doi: 10.1016/j.jfca.2010.09.001.

Miller, L. M., et D. L. Cassady. 2015. "The effects of nutrition knowledge on food label use. A review of the literature." Appetite 92:207-16. doi: 10.1016/j.appet.2015.05.029.

Ministère de l'action et des comptes publics, République française. 2018. Circulaires du 27 juillet 2018 : Contributions sur les boissons et préparations liquides pour boissons sucrées et édulcorées. Contributions indirectes. édité par Ministère de l'action et des comptes publics.

Ministre de la Justice, gouvernement canadien. 2023. Règlement sur les aliments et drogues. Dans Gazette du Canada.

OECD. 2021. Panorama de la santé 2021 : les indicateurs de l'OECD. Edité par Editions OECD. Paris: OECD Publishing.

Oliveira, A. A. A., A. C. Andrade, S. C. Bastos, J. P. F. Condino, A. Curzi Junior, et A. C. M. Pinheiro. 2021. "Use of strawberry and vanilla natural flavors for sugar reduction: A dynamic sensory study with yogurt." Food Res Int 139:109972. doi: 10.1016/j.foodres.2020.109972.

Oqali. 2012. Etude des ingrédients.
Oqali. 2017a. "Etude de l'évolution du secteur des Glaces et sorbets entre 2010 et 2015." https://www.oqali.fr/media/2021/12/Oqali 2017 Rapport evolution secteur Glaces et s orbets.pdf.

Oqali. 2017b. "Etude de l'évolution du secteur des Sauces condimentaires entre 2011 et 2016." HAL : https://anses.hal.science/anses-04189369.

Oqali. 2019a. "Bilan et évolution de l'utilisation des additifs dans les produits transformés. ." HAL : https://anses.hal.science/anses-02860704.

Oqali. 2019b. "Contributions de l'offre et de la demande à l'évolution de la qualité nutritionnelle de l'alimentation." HAL : https://hal.science/hal-02177365.

Oqali. 2020a. "Evolution des Céréales pour le petit déjeuner entre 2008, 2011 et 2018." HAL : https://hal.inrae.fr/hal-03106350.

Oqali. 2020b. "Etude de l'évolution du secteur des Sauces chaudes entre 2010 et 2017." HAL : https://hal.inrae.fr/hal-02909254.

Oqali. 2023a. "Etude de l'évolution du secteur des Boissons rafraichissantes sans alcool entre 2010, 2013 et 2019."

Oqali. 2023b. "Etude de l'évolution du secteur des Plats cuisinés ambiants entre 2010, 2016 et 2020." HAL : https://hal.inrae.fr/hal-04073343 et https://hal.inrae.fr/hal-04084413.

Oqali. 2023c. "Etude de l'évolution du secteur des Plats cuisinés surgelés entre 2012, 2016 et 2020." HAL : https://anses.hal.science/anses-04186382.

Parlement européen et Conseil, Union Européenne. 2008a. "RÈGLEMENT (CE) Nº1334/2008 du Parlement européen et du Conseil du 16 décembre 2008 relatif aux arômes et à certains ingrédients alimentaires possédant des propriétés aromatisantes qui sont destinés à être utilisés dans et sur les denrées alimentaires et modifiant le règlement (CEE) $n^{\circ} 1601 / 91$ du Conseil, les règlements (CE) nº2232/96 et (CE) nº110/2008 et la directive 2000/13/CE." Journal officiel de l'Union européenne L354 du 31 décembre 2008 CE/1334/2008:34.

Parlement européen et Conseil, Union Européenne. 2008b. "Règlement (CE) n ${ }^{\circ}$ 1333/2008 du Parlement européen et du Conseil du 16 décembre 2008 sur les additifs alimentaires." Journal officiel de l'Union européenne L354 du 31 décembre 2008 CE/1333/2008:16-33.

Parlement européen et Conseil, Union Européenne. 2011. Règlement (UE) n ${ }^{\circ}$ 1169/2011 du Parlement européen et du Conseil du 25 octobre 2011 concernant l'information des consommateurs sur les denrées alimentaires, modifiant les règlements (CE) n° 1924/2006 et (CE) , ${ }^{\circ} 1925 / 2006$ du Parlement europée et du Conseil et abrogeant la drective 87/250/CEE de la Commission, la directive 90/496/CEE du Conseil, la directive 1999/10/CE de la Commission, la directive 2000/13/CE du Parlement européen et du Conseil, les directives 2002/67/CE et 2008/5/CE de la Commission et le règlement (CE) n ${ }^{\circ}$ 608/2004 de la Commission. Dans Journal officiel de l'Union européenne L304 du 22 novembre 2011. Strasbourg, France.

Perrin, Cécile, Charlène Battisti, Amélie Chambefort, Olivier Digaud, Barbara Duplessis, Jean-Luc Volatier, Julie Gauvreau-Beziat, et Céline Menard. 2017. "Range of processed foods
available in France and nutrition labelling according to the type of brand." Journal of Food Composition and Analysis 64:156-162. doi: 10.1016/j.jfca.2017.08.009.

Perrin, Cécile, Charlène Battisti, Amélie Chambefort, Olivier Digaud, Barbara Duplessis, Jean-Luc Volatier, Julie Gauvreau-Béziat, et Céline Menard. 2018. "A comparison of the nutritional content of processed foods available on the French market, according to the type of brand, and potential impact on nutrient intakes-An Oqali study." Food Science \& Nutrition. doi: 10.1002/fsn3.655.

Powell, L. M., J. F. Chriqui, T. Khan, R. Wada, et F. J. Chaloupka. 2013. "Assessing the potential effectiveness of food and beverage taxes and subsidies for improving public health: a systematic review of prices, demand and body weight outcomes." Obes Rev 14 (2):11028. doi: 10.1111/obr. 12002.

Probst, Y. C., A. Dengate, J. Jacobs, J. C. Louie, et E. K. Dunford. 2017. "The major types of added sugars and non-nutritive sweeteners in a sample of Australian packaged foods." Public Health Nutr 20 (18):3228-3233. doi: 10.1017/S136898001700218X.

Ropero, A. B., N. Blain, et M. Beltra. 2020. "Nutrition Claims Frequency and Compliance in a Food Sample of the Spanish Market: The BADALI Study." Nutrients 12 (10). doi: 10.3390/nu12102943.

Solignat, Georges. 2004. "Produits de charcuterie - Ingrédients et additifs." Techniques de l'ingénieur.

Stieger, Markus, et Fred van de Velde. 2013. "Microstructure, texture and oral processing: New ways to reduce sugar and salt in foods." Current Opinion in Colloid \& Interface Science 18 (4):334-348. doi: 10.1016/j.cocis.2013.04.007.

Te Morenga, L., S. Mallard, et J. Mann. 2012. "Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies." BMJ 346:e7492. doi: 10.1136/bmj.e7492.

United States Department of Agriculture, USDA. "What are Added Sugars ?", Dernière mise à jour 09/11/2016 Consulté le 22/08/2018. https://www.choosemyplate.gov/what-are-added-sugars.

Velazquez, A. L., L. Vidal, P. Varela, et G. Ares. 2020. "Cross-modal interactions as a strategy for sugar reduction in products targeted at children: Case study with vanilla milk desserts." Food Res Int 130:108920. doi: 10.1016/j.foodres.2019.108920.

WHO. 2015. "World Health Organization guideline: sugars intake for adults and children."
World Health Organization, WHO. 2003. "Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO Expert Consultation." 916.

[^0]: ${ }^{1}$ All the manufacturers and retailer brands that are partners of OQALI (mainly through the professional unions), as well as consumer associations and representatives of the three ministries responsible for agriculture, health and consumer affairs.
 ${ }^{2}$ Compared with the 2012 study, which only examined ingredients corresponding to intense sweeteners (i.e. 10 ingredients), this report is based on research into 706 sweetening ingredients or ingredients conveying sweetness.

[^1]: ${ }^{3}$ Ratio of product volumes identified by OQALI to the total market volume characterised by Kantar Worldpanel.
 ${ }^{4}$ Kantar Worldpanel: purchasing data from households representative of the French population.
 ${ }^{5}$ Cheeses containing no ingredients other than lactic products, food enzymes, micro-organism cultures and salt are not required to be labelled with an ingredient list. As none of these are regarded as sweetening ingredients or ingredients conveying sweetness, these products are counted as having no sweetening ingredients or ingredients conveying sweetness.

[^2]: ${ }^{6}$ The five classes considered were Sucrose, Syrups, Other sugars, Lactose and Honey.

[^3]: ${ }^{7}$ The five classes considered were Sucrose, Syrups, Other sugars, Lactose and Honey.

[^4]: ${ }^{8}$ As a reminder, the "Other sugars" class groups together all mono- and disaccharides, alone or in combination (excluding sucrose, mention of "sugar" and lactose)

[^5]: ${ }^{9}$ As a reminder, this class groups together ingredients mentioning a "sweet" or "caramelised" state, candied fruit, oligosaccharides (except in syrup form) and formulated ingredients that have not been broken down

[^6]: ${ }^{1}$ Combinations with frequency of presence values below 1\% were grouped together in "Other combinations of intense sweeteners"
 Figure 35: Breakdown of artificially-sweetened products by combination of intense sweeteners found in the ingredient lists, for the four relevant food categories

[^7]: ${ }^{10}$ Specialised retailer brands focus on frozen foods, i.e. seven of the 31 categories studied, and mainly those with among the highest proportions of products containing at least one sweetening ingredient or ingredient conveying sweetness, including Ice creams and sorbets, Frozen pastries and desserts and, to a lesser extent, Frozen snacking products and Ready-to-eat frozen meals.
 ${ }^{11}$ Not all the products in the Fruit juices and nectars category were presented as containing at least one ingredient from the Fruit juices and concentrates class, as some ingredient lists identified freshly squeezed fruit or fruit in purée form, or only indicated the fruit without mentioning the state. By convention, these are not considered by OQALI to be sweetening ingredients or ingredients conveying sweetness.

[^8]: ${ }^{12}$ Specialised retailer brands focus on frozen foods, including the Ice creams and sorbets and Frozen pastries and desserts categories. The latter made a major contribution to the proportion of products with at least one sweetening ingredient or ingredient conveying sweetness in this type of brand.
 ${ }^{13}$ As lactose is an allergen, it must be declared in the ingredient list. The lactose may therefore be counted in this study because it is present in the ingredient list due to its allergenic nature, even though it is not an ingredient as such (e.g. a flavour carrier).

[^9]: ${ }^{14}$ Ratio of product volumes identified by OQALI to the total market volume characterised by Kantar Worldpanel.
 ${ }^{15}$ Kantar Worldpanel: purchasing data from households representative of the French population.

[^10]: ${ }^{16}$ Cheeses containing no ingredients other than lactic products, food enzymes, micro-organism cultures and salt are not required to be labelled with an ingredient list. As none of these are regarded as sweetening ingredients or ingredients conveying sweetness, these products are counted as having no sweetening ingredients or ingredients conveying sweetness.

[^11]: ${ }^{17}$ In addition to the Baby food and Cheeses categories, the Confectionery and Infant milks categories are described in Section 3.2. Frequency of presence of at least one sweetening ingredient or ingredient conveying sweetness but not in this part on changes.

[^12]: Purple cells: significant decrease in the frequency of presence of the considered number
 range cells: significantincease in the in the products between baseline and follow-up (${ }^{*}$ if $p<0.05 ;{ }^{* *}$ if $p<0.01$; *** if $p<0.001$)
 Statistical test performed: chi-square test

[^13]: ${ }^{18}$ As a reminder, because the product offering focuses on frozen foods, specialised retailer brands had no products for the three relevant categories. In addition, very few products for this type of brand were sweetened ($n=4$ at baseline and $n=4$ at follow-up), so it is difficult to compare it with the other types of brands.

[^14]: Purple cells: significant decrease in the frequency of presence of the intense sweetener or combination of intense sweeteners considered in the products between baseline and follow-up (* if p<0.05; ** if p<0.01; *** if p<0.001)
 Orange cells: significant increase in the frequency of presence of the intense sweetener or combination of intense sweeteners considered in the products between baseline and follow-up (* if p<0.05; ** if p <0.01; ${ }^{* * *}$ if $\mathrm{p}<0.001$)
 Statistical test performed: chi-square test

[^15]: ${ }^{19}$ As a reminder, because the product offering focuses on frozen foods, specialised retailer brands had no products for the three relevant categories. In addition, very few products for this type of brand were sweetened ($\mathrm{n}=4$ at baseline and $\mathrm{n}=4$ at follow-up), so it is difficult to compare it with the other types of brands.

[^16]: ${ }^{20}$ Note that the proportions of products with at least one sweetening ingredient or ingredient conveying sweetness at follow-up cannot be compared with those observed at baseline, based on the latest data available, because four product categories were taken into account in the review part but not in this part on changes: in particular Baby food and Cheeses, where the proportions of products containing at least one sweetening ingredient or ingredient conveying sweetness were among the lowest (Figure 5).

[^17]: ${ }^{21}$ Steviol glycosides have only been authorised for use in the European Union since December 2011. However, because the data for the baseline were collected before their authorisation - in particular for the Soft drinks, Syrups and Fresh dairy products and desserts categories, where steviol glycosides were mainly found - this largely explains the significant increase observed for this intense sweetener.

[^18]: In: total number of prod patsen e frearedient list, all types 0
 As specialised retailer brands were present in only seven prod

[^19]: Other combinations: groups together combinations whose frequency of presence was < 1\%
 ${ }^{2}$ Other sugars: all mono- and disaccharides, alone or in combination (excluding sucrose, mention of "sugar" and lactose)
 ${ }^{3}$ Other classes: groups together the following classes: Caramel, Other ingredients conveying sugars, Bulk sweeteners, Honey, and Flavourings whose flavour is evocative of a sweetening ingredient or ingredient conveying sweetness

[^20]: the same product may contain several intense sweeteners

[^21]: the same product may contain several intense sweeteners
 As sped products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

[^22]: As specialised retailer brands were present in only seven product categories out of the 31 studied (Baby food, Sod
 Frozen snacking products, Frozen pastries and desserts), it is difficult to compare them to the other types of brands

[^23]:

